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About This Book 

Digitalisation and environmental sustainability are two of the mega-
trends impacting industry and society. This open-access Pivot is a timely 
exploration of some of the challenges and prospects related to digital 
sustainability from two main perspectives: how digital technologies can 
be used and maintained in a way that is environmentally sustainable 
over the long term (greening of digital technologies), and how digital 
technologies can be used to address climate change and improve envi-
ronmental and sustainability outcomes (greening by digital technologies). 
The chapters included in this book are designed to provide some key 
definitions and concepts related to digital sustainability and its evolution, 
and more detailed insights on some of the key priority areas outlined in 
the European Green Deal, namely energy, mobility, buildings, food, and 
the circular economy. A critical review of these topics will summarise and 
present different perspectives that challenge old assumptions and high-
light emerging trends and possibilities for digital sustainability. Industry 
and society face significant challenges in the twin transition to digital and 
green transformation, not least of which is the need to balance investment 
in digital technologies with environmental sustainability. This open-access 
book can serve as a primer for scholars, policymakers, and enterprise 
decision-makers, providing insights on navigating innovation ecosystems 
to support both green and digital objectives.
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CHAPTER 1  

Digital Sustainability: Key Definitions 
and Concepts 

Pierangelo Rosati, Theo Lynn, David Kreps, 
and Kieran Conboy 

Abstract Current market dynamics require organisations to compete in 
a hypercompetitive environment that is constantly reshaped by digital 
transformation. At the same time, organisations face growing pressure to 
implement more sustainable practices in their day-to-day operations and 
contribute to the UN Sustainable Development Goals. This has led to two
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discrete research fields in the wider sustainability domain, namely research 
that explores and addresses (1) the environmental impact of Information 
and Communication Technologies (ICTs) themselves (Green IT), and 
(2) the design and promotion of applications of ICTs to reduce adverse 
environmental impacts of ICTs (Green IS). While these fields have been 
typically explored separately in the academic literature, recent studies have 
proposed the idea of ‘digital sustainability’ which highlights the pres-
ence of potential valuable synergies between them. This chapter aims to 
define what we mean by digital sustainability and discusses some of the 
main trends, themes and concepts related to digital sustainability before 
discussing the different topics covered in the remainder of the book. 

Keywords Digital sustainability · Digital transformation · Green IS · 
Green IT · Climate change · Twin transformation 

1.1 Introduction 

In recent years, the concept of sustainability has transcended its tradi-
tional environmental roots and extended into the digital realm. This 
chapter delves into the burgeoning domain of digital sustainability, 
tracing its evolution and providing comprehensive definitions. As the 
digital landscape continues to expand and evolve, understanding digital 
sustainability becomes imperative for ensuring responsible and resilient 
digital ecosystems. 

The core ecological challenge of our era consists of three interlocking 
crises, namely energy, economic growth, and extinction (Kreps, 2018). 
While these challenges have been overlooked by corporations for a very 
long time, there has been a clear shift in recent decades. For almost thirty 
years, the awareness of the three ‘Ps’ (Profit, People, Planet) of the so-
called Triple Bottom Line (TBL) model (Elkington & Rowlands, 1999; 
Savitz, 2013; Willard, 2012) has been reaching deeper and deeper into 
business consciousness. The main argument behind this model is essen-
tially that organisations need to consider three distinct bottom-lines when 
evaluating their business performance. Firstly, of course, the bottom line 
of the profit and loss account. Secondly, the bottom line of a company’s 
people account: a measure (and measuring this is not straightforward) of 
how socially responsible an organisation has been and is being throughout
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its operations. Corporate Social Responsibility and increasingly Corpo-
rate Data Responsibility are key elements of business practice for this 
people account. Finally, the third bottom line is the company’s planet 
account: a measure of how environmentally responsible the organisation 
has been and is being. Thus, as Hart and Milstein (2003, p. 56) put it, “a 
sustainable enterprise is one that contributes to sustainable development 
by delivering simultaneously economic, social, and environmental bene-
fits—the so-called triple bottom line”, or as Savitz (2013, p. v) put  it,  
TBL “captures the essence of sustainability by measuring the impact of an 
organisation’s activities on the world; including both its profitability and 
shareholder values and its social, human and environmental capital”. For 
Hart and Milstein (2003), there are four principal drivers for such a route, 
namely (1) resource efficiency and pollution prevention, (2) Internet-
connected coalitions of non-governmental organisations (NGOs), (3) 
distributed technologies and (4) social development and wealth creation 
on a massive scale. 

To enter a sustainable development pathway in accordance with the 
United Nations Sustainable Development Goals (SDGs) (United Nations, 
2015), vast societal changes are required. Sachs et al. (2019) group such 
social changes into six main ‘transformations’: (1) education, gender and 
inequality; (2) health, well-being and demography; (3) energy decarbon-
isation and sustainable industry; (4) sustainable food, land, water and 
oceans; (5) sustainable cities and communities; and (6) digital revolution 
for sustainable development. This chapter, and this book more generally, 
aims to contribute to the discussion on the sixth of these transformations 
by exploring digital sustainability through the lenses of different perspec-
tives and applications. The remainder of this chapter is structured as 
follows: Sect. 1.2 discusses the intersection between digital transformation 
and sustainability. Section 1.3 defines digital sustainability. Section 1.4 
provides a summary of key themes in digital sustainability research and 
provides an overview of key terms and concepts related to digital sustain-
ability that appear in this book and in the wider academy and industry 
discussion on this topic. Section 1.5 presents a summary of the topics 
discussed in the remaining chapters of this book. Finally, Sect. 1.6 presents 
some final remarks to conclude the chapter.
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1.2 Tackling the Sustainability 

Challenge Through Digital Transformation 

ICT and information systems (IS) are often presented as both a cause 
and a potential solution to the climate crisis. In fact, data centres and 
the wider communications sector are set to be responsible for 20% of the 
world’s electricity use in the coming years (Andrae, 2017). Moreover, it 
has been argued that “the vast majority of information systems research 
is motivated and positioned as being of value to corporate stakeholders, 
often paraphrased by authors in their research contributions as ‘man-
agers’” (Davison, 2023, p. 1). Such a focus upon profit maximisation in 
IS discourse has been largely to the exclusion of social and environmental 
concerns. However, both IT and IS can play a critical role in supporting 
businesses to improve capabilities that deal with sustainability challenges 
(Hanelt et al., 2017). Korte et al. (2012) have pointed out that identi-
fying and engaging all stakeholders in a sustainability focus in information 
systems management can be key to its success. 

The response in respect of the climate crisis from research on digital 
technologies has, to date, been twofold: (1) attempts to address the 
carbon footprint of ICT themselves, sometimes referred to as ‘Green 
IT’ (e.g., Bose & Luo, 2011; Butler,  2011; Desautels & Berthon, 2011; 
Elliot, 2011; Watson et al., 2010; Zhang et al., 2011), and (2) research 
towards the design and promotion of applications of technology and 
systems (Elliot & Webster, 2017) to “reduce the adverse environmental 
impacts of business activities” (Nishant et al., 2017, p. 543) sometimes 
referred to as Green IS (Chow & Chen, 2009; Cooper & Molla, 2017; 
Gholami et al., 2016; Hedman & Henningsson, 2016; Loeser et al.,  
2017; Malhotra et al., 2013; Melville, 2010). 

More recently, IS scholarship has turned also to other aspects of 
sustainability, including smart cities (Ismagilova et al., 2019), the circular 
economy (Zeiss et al., 2021), the high energy consumption of blockchain 
(Hughes et al., 2019), IS for the promotion of ecologically responsible 
behaviours (Corbett, 2013; Loock et al., 2013) and, last but not least, the 
importance of responding to the United Nations SDGs in the IS discipline 
(Corbett & Mellouli, 2017; Pan & Zhang, 2020; Watson et al.,  2021). 
For Lawler (2012), however, for an organisation to truly embark on the 
sustainability journey, they should practice and integrate sustainability in 
all of their operations, which implies that sustainability is integrated into



1 DIGITAL SUSTAINABILITY: KEY DEFINITIONS AND CONCEPTS 5

the very fabric of an organisation and everything that proceeds out of it. 
This is a key realisation for sustainability transformation. 

An emerging strand of the academic literature spanning across multiple 
disciplines focuses on the interplay between digital transformation and 
sustainability and refers to this combination as ‘digital sustainability’ 
(George & Schillebeeckx, 2021; Pan & Zhang, 2020; Stuermer et al., 
2017). Digital transformation can be defined as “a process that aims 
to improve an entity by triggering significant changes to its properties 
through combinations of information, computing, communication, and 
connectivity technologies” (Vial, 2021, p. 118). As such, it describes 
a firm-wide change which affects the way an organisation does busi-
ness and impacts its value creation processes (Gölzer & Fritzsche, 2017; 
Verhoef et al., 2021). Traditionally, most of the interest in digital trans-
formation has been driven by its potential to deliver financial benefits 
to the organisation through increases in sales or productivity, business 
model innovations, and novel ways to connect with customers and other 
stakeholders, among others (Downes and Matt et al., 2015; Nunes, 
2013). Matt et al. (2015), for instance, present ‘financial aspects’ as 
one of the four essential dimensions of digital transformation strate-
gies. More recently though, researchers have called for more attention 
to the non-financial benefits of digital transformation to include not only 
direct organisational non-monetary benefits but also societal and envi-
ronmental benefits of these transformation initiatives (see, for example, 
von Kutzschenbach & Daub, 2020; Zimmer & Järveläinen, 2022). In 
addition to this, a growing number of studies discuss digital transforma-
tion and sustainability transformation as synergistic rather than competing 
phenomena within organisations (George & Schillebeeckx, 2021; George  
et al., 2021; Mair & Gegenhuber, 2021; Pan & Zhang, 2020; Zimmer & 
Järveläinen, 2022). 

1.3 What is Digital Sustainability? 

Bencsik et al., (2023, p. 3) refer to digital sustainability as “a nascent 
research strand with several blind spots”. As it often happens in emerging 
research streams, one of such blind spots is represented by the lack of a 
unique shared definition of key concepts; digital sustainability is no excep-
tion. In fact, a number of definitions of digital sustainability have been 
proposed in various academic disciplines, from entrepreneurship (e.g., 
George et al., 2021) to marketing (e.g., Bencsik et al., 2023), information
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systems (e.g., Kotlarsky et al., 2023; Pan et al., 2022), and management 
(e.g., Falcke et al., 2024). Industry participants (e.g., Deloitte, 2023; 
KPMG, 2024) and international organisations (e.g., United Nations, 
2024) have not shied away from this growing discussion either and have 
contributed to the growing debate on what digital sustainability means 
and the value it may potentially deliver for different stakeholders. 

In the simplest way, digital sustainability can be defined as the conver-
gence of digital transformation and sustainability transformation (also 
referred to as ‘Twin Transformation’ in Chapter 3 of this book) (Kotlarsky 
et al., 2023; Pan  et  al.,  2022; United Nations, 2024). However, this 
definition does not communicate the whole breath of digital sustain-
ability activities and their potential impacts and implications. Sparviero 
and Ragnedda (2021) argue that to better conceptualise digital sustain-
ability it is important to understand where the concept of sustainability 
came from. While ‘digital’ sustainability has been under the spotlight 
in recent years, it is the result of an “on-going international interac-
tion between new social movements, academia, politics and business” 
(Huber, 2000, p. 270) engaged in the so-called Rio process which has 
brought sustainability to the attention of industry participants, academic 
researchers, and the overall society more generally (Tulloch & Neilson, 
2014). With this perspective in mind, digital sustainability builds on the 
same key values of sustainability (Sparviero, 2021; Sparviero & Ragnedda, 
2021), namely:

• Equality: respect for equal rights of all without distinction for race, 
sex, language or religion, but also equality of opportunities for both 
present and future generations so they should all have access to the 
necessary resources to fulfil their needs (United Nations General 
Assembly, 2015).

• Harmony: the optimal end-state of a balanced and a collabora-
tive process leading to better quality of life for everybody and to 
a common sense of shared responsibility (United Nations General 
Assembly, 2015).

• Self-determination: a sense of empowerment and of being in control 
of one’s environment that not only characterises responsible citi-
zens that are keen to participate in the protection of such an 
environment, but it also applies to social communities and coun-
tries that promote the respect for territorial integrity and political
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independence (Tsosie, 2009; World Commission of Environment & 
Development, 1987). 

In this context, digital sustainability may be defined as a set of values that 
“are the same values as sustainability, so that, if applied to the creation 
and adoption of new digital technologies, they contribute to a sustainable 
future” (Sparviero & Ragnedda, 2021, p. 221). This definition of digital 
sustainability, however, fails to highlight the three typical perspectives of 
sustainability, namely:

• Environmental sustainability: it mostly focuses on decreasing 
consumption of natural resources and engaging in practices aimed at 
improving the long-term health of the planet (Melville, 2010). Envi-
ronmentally sustainable activities mostly aim to reduce greenhouse 
gas (GHG) emissions and prioritise the use of renewable resources 
to sustain all forms of life (Ekins, 2011; Melville, 2010).

• Economic sustainability: it relates to approaches that foster enduring 
economic prosperity while safeguarding natural resources and 
enhancing societal well-being (Anand & Sen, 2000; Foy,  1990; 
Spangenberg, 2005).

• Social sustainability: it involves nurturing robust societal advance-
ments by fostering the growth of civil communities and fulfilling 
the present needs of society without jeopardising the well-being of 
future generations (Vallance et al., 2011). The main objective of 
social sustainability is to promote compatibility amidst cultural and 
social diversity while elevating individuals’ standards of living and 
responsibly addressing the societal implications of business activities 
(UN Global Compact, 2024). 

An alternative definition that somewhat overcomes such a limitation has 
been proposed by George et al., (2021, p. 1000) who define digital 
sustainability as “organisational activities that seek to advance the sustain-
able development goals through creative deployment of technologies that 
create, use, transmit, or source electronic data”. As this definition points 
to the ‘deployment’ of digital technologies for advancing sustainable 
development, it mostly speaks to the concept of ‘Green IS’ or, to put it in 
different words, to sustainability by digital. As such, it essentially ignores 
the overall discussion around the sustainability of digital technologies
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which mostly focuses on the ‘development’ of more sustainable digital 
technologies (also referred to as ‘Green IT’). More recently, Kotlarsky 
et al. (2023, p. 938) have defined digital sustainability as “the develop-
ment and deployment of digital resources and artifacts toward improving 
the environment, society, and economic welfare”. 

This definition, although quite simple and concise, overcomes the 
outstanding limitations of other definitions that were proposed in the 
past however does not fully acknowledge the importance of sustainability 
across the lifecycle of the digital resources and artefacts. In some cases, 
shutting down or decommissioning digital artefacts and resources may 
be the most sustainable outcome. Furthermore, it does not underscore 
the need for adaptability in such solutions. Consequently, we propose 
an extension of this definition which we adopt as the main definition of 
digital sustainability in this chapter and, more generally, in this book: 

Digital sustainability refers to the design, development, configuration, 
deployment, and decommissioning of digital resources and artifacts toward 
improving the environment, and economic welfare. 

1.4 Key Trends, Themes and Concepts 

in Digital Sustainability 

Based on our discussion on the definitions of digital sustainability, it 
clearly emerges that this field of research is evolving rapidly and attracts 
significant attention from academia and industry alike. Interestingly, even 
though digital sustainability represents a relatively recent research area, 
it builds on concepts, values and theories that have already been devel-
oped in more established areas of the academic literature such as Green IS 
and Green IT (Kotlarsky et al., 2023). These provide digital sustainability 
researchers with robust theoretical and methodological foundations and 
will likely accelerate the development of this stream of research. 

Most of the literature on sustainability generally and, more specifi-
cally, on digital sustainability focuses on environmental sustainability and 
climate change (Kotlarsky et al., 2023; Pan et al., 2022). This is somewhat 
unsurprising given the sustainability discussion at an international level 
was primarily established in response to growing concerns about the state 
of health of our planet and the detrimental long-term impacts of irrespon-
sible use of natural resources (Sparviero & Ragnedda, 2021). Kuntsman
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and Rattle (2019) present a systematic review of the existing literature 
on digital sustainability and climate change and classify studies across four 
categories based on how digital and sustainability were conceptualised: 
(1) digital as a tool of sustainable innovation; (2) digital as a facilitator 
of change in people’s behaviour through education; (3) digital as a facil-
itator of change in people’s consumption patterns; and (4) digital as a 
material object. Articles framing digital as a facilitator of change account 
for the majority of the studies, followed by studies in on e-waste (digital 
as a material object) and studies picturing digital as a tool of sustain-
able innovation. More interestingly though, the authors highlight that a 
bias towards the positive outcomes of digital is commonly present across 
all categories. The authors refer to this phenomenon as ‘digital solu-
tionism’ and call for “a systematic account of global and local material 
damages of devices, platforms and data systems adopted into sustainability 
research and practice […]” and “[…] a reconceptualization and denatu-
ralisation of the digital itself as a default solution” (Kuntsman & Rattle, 
2019, p. 579). Overall, this suggests that, even though environmental 
sustainability has attracted most of the research effort so far, significant 
research opportunities still exist in this area particularly in relation to 
the potential environmental impact of the transition from old to new 
technologies, and development and large-scale deployment of energy-
demanding digital technologies such as artificial intelligence (AI), cloud 
computing, blockchain and quantum computing. 

Moving beyond the narrow view of environmental sustainability to 
include the economic and social perspectives of sustainability, Guandalini 
(2022) summarises existing literature across four key themes, namely 
(1) digitalisation strategies for sustainability purposes, (2) applicability 
of digital sustainability to specific industries or sectors (e.g., smart agri-
culture, industry 4.0, etc.), (3) applicability of digital sustainability to 
different types of organisations (e.g., public vs private sector, large vs 
small to medium enterprises, etc.) and stakeholders (e.g., communities, 
consumers, etc.), and (4) sustainability through specific digital technolo-
gies or functionalities (e.g., big data, digital twins, Internet of Things, 
etc.). Despite the relatively large number of studies considered in this 
review (given the emerging nature of this literature), several research gaps 
still remain. In this context, potential avenues for future research may 
include, for example, the implementation of multidisciplinary approaches 
looking at the implementation of digital sustainability from both a 
technical (e.g., computer science) and non/less technical domain (e.g.,
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management, organisational behaviour, etc.) (Guandalini, 2022), the 
investigation of organisational strategies for digital sustainability that may 
provide more transferable findings across different sectors and contexts 
(Falcke et al., 2024), cross-country comparisons of digital sustainability 
practices and outcomes in different empirical contexts (Delgosha et al., 
2021), the mapping of value capturing strategies and business model 
blueprints for digital sustainability (Bencsik et al., 2023), and the design 
of performance measurement frameworks for digital sustainability initia-
tives that take into account various business and societal stakeholders 
(Kotlarsky et al., 2023). Finally, some key terms and concepts in the 
digital sustainability that appear in this book and in the wider digital 
sustainability discussion are presented in Table 1.1.

1.5 Perspectives on Digital Sustainability 

The other six chapters of this book offer varied viewpoints and valu-
able insights that contribute to our comprehension and interpretation of 
digital sustainability. They illustrate that, despite considerable intellectual 
endeavours in conceptualising digital sustainability, we are still at an early 
stage of theoretical development and empirical research. More impor-
tantly, they emphasise the necessity for actionable outcomes that can 
inform and guide practical applications and support both organisational 
and individual decision-making. They are presented as follows. 

Chapters 2 and 3 are dedicated to sustainability of digital technologies 
and the interplay between digital transformation and the sustainability 
challenges that organisations face in the current market environment. 
More specifically, Chapter 2 discusses the evolution of Green IT and 
how organisations have embedded this concept into their activities along 
the entire value chain in response to growing environmental concerns 
associated with ICT. The chapter then highlights the environmental chal-
lenges posed by emerging technologies such as AI and blockchain, and 
the growing emphasis on circular economy principles (repair, reuse and 
refurbish). Overall, the authors suggest that the growing interest in these 
emerging issues may be interpreted as a renewed focus on mitigating the 
negative impacts of ICT within Sustainable ICT. 

Chapter 3 introduces the concept of ‘Twin Transformation’, a combi-
nation of digital and sustainability transformation that enables organisa-
tions to leverage the strengths of digital technologies to reach sustain-
ability objectives and vice versa. The authors put particular emphasis
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Table 1.1 Key terms and concepts in digital sustainability 

Term Definition 

Carbon footprint Carbon footprint represents the total 
greenhouse gas (GHG) emissions 
produced directly or indirectly by an 
activity or accumulated over the lifecycle 
of a product (Shi & Yin, 2021) 

Carbon offsetting Carbon offsetting refers to “an activity 
when a company or other actor 
purchases carbon credits, retires them, 
and claims the climate benefit as part of 
its climate action” (Helppi et al., 2023, 
p. 925) 

Circular economy Circular economy refers to an economic 
system aimed at minimising waste and 
maximising the reuse, recycling and 
repurposing of resources, including 
digital devices and components that is 
enabled by an alliance of stakeholders 
(e.g., industry, consumers, policymakers, 
researcher) and their technological 
innovations and capabilities (Kirchherr 
et al., 2023) 

Deep renovation Deep renovation is a renovation that 
captures the full economic energy 
efficiency potential of all improvement 
works to existing residential buildings 
that leads to a very high energy 
performance and significant energy 
savings (Lynn et al., 2021) 

Digital divide Digital divide refers to the gap between 
individuals and communities that have 
different access to digital technologies 
often due to socioeconomic factors, 
geographical location or infrastructure 
limitations, leading to disparities in 
opportunities and outcomes (Lynn et al., 
2022; Philip et al., 2017) 

Digital literacy Digital literacy refers to the ability to 
access, evaluate and effectively use digital 
technologies and information resources 
for personal, social and professional 
purposes (Martin & Grudziecki, 2006)

(continued)
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Table 1.1 (continued)

Term Definition

Digital transformation “A process that aims to improve an 
entity by triggering significant changes to 
its properties through combinations of 
information, computing, communication, 
and connectivity technologies” (Vial, 
2021, p. 118) 

Electronic waste (or e-waste) Electronic waste refers to discarded 
electronic devices and components, such 
as computers, smartphones and 
appliances, that pose environmental and 
health risks (Amankwah-Amoah, 2016) 

Environmental impact assessment Environmental impact assessment (EIA) 
refers to a multi-stage assessment 
framework for identifying and 
systematically evaluate the environmental, 
social and economic impacts of 
significant developments (Northmore & 
Hudson, 2022) 

Environmental monitoring Environmental monitoring refers to the 
systematic collection, analysis and 
interpretation of data concerning various 
environmental parameters, such as air 
and water quality, noise pollution, 
temperature and humidity, using 
advanced technologies and IoT devices 
(Catlett et al., 2017) 

Green computing Green computing refers to the practice 
of designing, manufacturing and using 
computer systems and IT resources in an 
environmentally sustainable manner 
therefore minimising energy 
consumption, reducing electronic waste 
and promoting the use of renewable 
energy sources in computing operations 
(Kurp, 2008) 

Green IT Green IT refers to the practice of 
designing, manufacturing, using and 
disposing of information technology in 
an environmentally responsible manner 
(Murugesan, 2008; Molla, 2013; 
Thomas et al., 2016)

(continued)



1 DIGITAL SUSTAINABILITY: KEY DEFINITIONS AND CONCEPTS 13

Table 1.1 (continued)

Term Definition

Green IS Green IS refers to the use of technology 
to achieve environmental objectives while 
maintaining or improving the 
performance and functionality of digital 
infrastructures and services (Hedman & 
Henningsson, 2016; Leidner et al., 
2022; Loeser et al.,  2017; Malhotra 
et al., 2013) 

Intelligent transportation systems or smart 
(transportation) 

Intelligent Transportation Systems or 
Smart Transportation refers to the 
application of advanced sensor, 
computer, electronics, and 
communication technologies, and 
management strategies in an integrated 
manner to improve the safety and 
efficiency of the surface transportation 
system (McGregor et al., 2003) 

Life cycle assessment Life cycle assessment is a systematic 
analysis of the environmental impacts 
associated with a product, service or 
process throughout its entire life cycle, 
from raw material extraction to 
end-of-life disposal (Finnveden et al., 
2009) 

Smart building Smart building refers to cyber-physical 
solutions able to support and aid the 
daily routines of users and/or to 
optimise the management of the building 
(Vale et al., 2023) 

Smart city Smart cities leverage digital technologies 
to enhance efficiency, sustainability and 
quality of life for residents, often 
incorporating initiatives related to energy 
management, transportation and public 
services (Albino et al., 2015; Batty et al., 
2012)

(continued)
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Table 1.1 (continued)

Term Definition

Smart grid Smart grids leverage digital technologies, 
such as sensors, connected meters and 
analytics, to optimise the generation, 
distribution and consumption of 
electricity, enabling efficiency 
improvements, demand response and 
integration of renewable energy sources 
into the power grid therefore 
contributing to sustainability and 
resilience in the energy sector (Tuballa & 
Abundo, 2016) 

Smart waste management Smart waste management (SWM) is the 
use of enabling ICTs for more efficient, 
effective and sustainable operations of 
waste management (Zhang et al., 2019) 

Sustainability transformation It refers to the comprehensive and 
systemic changes in societal, economic 
and environmental systems aimed at 
achieving long-term sustainability goals. 
This involves, for example, shifting 
towards more sustainable practices, 
policies and behaviours to address 
pressing global challenges such as climate 
change, biodiversity loss and social 
inequality (Elliot, 2011; Melville, 2010) 

Sustainable design Sustainable design involves creating 
products, services and systems with 
minimal environmental impact 
throughout their lifecycle, from 
conception to disposal (He et al., 2018; 
McLennan, 2004) 

Sustainable innovation Sustainable innovation involves 
developing novel solutions, products and 
business models that address societal and 
environmental challenges while creating 
long-term value for stakeholders, 
fostering resilience and competitiveness 
in the economy (Cillo et al., 2019; Tello 
& Yoon, 2008)
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on the use of AI to foster twin transformation initiatives thanks to its 
ability to leverage ever-increasing data flows to deal with complex and 
multi-faceted challenges which are typical of sustainability. The chapter 
concludes with the presentation of a framework for AI-enabled Twin 
Transformation and a call for more studies at the intersection of AI-
enabled systems, information systems for environmental sustainability 
(Green IS and Green IT) and digital transformation to provide more 
theoretical and practical insights on how to best harness the potential 
of both digital transformation and sustainability transformation. 

The second part of this book focuses on four of the eight priority 
areas for sustainability identified in the European Green Deal (European 
Commission, 2019), namely energy (Chapter 4), sustainable mobility 
(Chapter 5), sustainable food (Chapter 6) and the circular economy 
(Chapter 7).1 Chapter 4 discusses the role of digital transformation in 
enhancing efficiency, sustainability and resilience in power generation, 
transmission and consumption. More specifically, the chapter focusses on 
how deep learning and reinforcement learning can be used to enable 
smart grids and better manage the production, storage and usage of elec-
tricity from renewable sources, and to protect the energy infrastructure for 
malicious cyberattacks. The author argues that, if implemented correctly, 
these technologies can act as catalysts for the transition to smarter, more 
efficient, resilient and sustainable energy systems. 

Chapter 5 is dedicated to the implementation of sustainable practices in 
the urban environment, whether in cities or towns. The chapter discusses 
four key research themes relating to digital sustainability in smart cities 
and towns, namely smart transportation systems, building energy optimi-
sation, smart waste management and environmental monitoring. As such, 
it encompasses a wide range of the European Green Deal’s priority areas. 
The authors conclude highlighting that the road leading to the realisa-
tion of smart cities and towns is not without challenges. These can only 
be overcome implementing an inclusive, long-term and multi-stakeholder 
collaborative approach which will provide us with the opportunity to 
create a more digital, sustainable and liveable future for generations to 
come.

1 Other priority areas have been discussed in other publications. See, for example, Lynn 
et al. (2023) for an in-depth discussion on the role of digital technologies in the context 
of building renovation. 
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Chapter 6 is dedicated to implementation of digital sustainability 
within food systems. More specifically, this chapter focusses on smart 
farming technologies and discusses how these technologies can lead to 
the development of more sustainable farming practices and to more 
resilient food systems. The authors provide an overview of the main 
barriers and drivers to the realisation of sustainable digital agriculture and 
discusses international visions of future food systems as proposed by inter-
national agencies such as the United Nations (UN), Food and Agriculture 
Organisation (FAO), the Organisation for Economic Co-operation and 
Development (OECD), the World Bank, and European Union (EU). 

Finally, Chapter 7 discusses the principles of the circular economy and 
of sustainable product management (SPM). The authors focus on the 
application of four key technologies (AI, analytics, the Internet of Things 
and blockchain) for SPM and on how they can be applied in the context 
of Life Cycle Assessment (LCA) and Product Service Systems. Finally, the 
authors present the use of digital product passports in an SPM context 
using electric vehicle batteries as an exemplar use case. 

1.6 Conclusion 

Digitalisation creates unique opportunities for organisations to prosper 
but it also poses significant threats to how they transact and interact; 
climate change is a significant threat to society. To survive, organi-
sations and society need to balance both a digital and sustainability 
transformation. Extant literature clearly differentiates between research 
on the environmental impact of digital technologies and the potential 
of digital technologies to contribute to reducing the adverse impact of 
business and societal activities on the environment. These should not 
be viewed as mutually exclusive activities but rather as interrelated and 
inter-dependent, a twin transformation that mutually motivates and accel-
erates the other. Notwithstanding this, digital sustainability is a relatively 
new term in scholarly literature whose definition remains nascent. In 
this chapter, we discuss current conceptualisations of digital sustainability 
and define it as the design, development, configuration, deployment and 
decommissioning of digital resources and artefacts towards improving the 
environment and economic welfare. The remainder of the book presents 
snapshots of research on key themes in digital sustainability both on 
Green IT and Green IS, separately and together.
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The transition to a society that builds on both digitalisation and 
sustainability provides us with substantial opportunities and significant 
challenges. We face the challenge of transitioning to an ‘information 
society’ permeated by digital technologies without not only compro-
mising environmental values but actively contributing to the reversal of 
the adverse effects of climate change. Yet despite the potential of digital 
technologies and the existential threat of climate change, our progress 
is retarded by a lack of awareness, access, adoption and use of digital 
technologies to achieve sustainable outcomes. Accelerating digital sustain-
ability requires addressing these issues in a coordinated and integrated 
way. Reframing and refocusing enterprise strategies to accelerate climate 
action and sustainability through better designed and purposeful digital 
technologies is a good start. 

References 

Albino, V., Berardi, U., & Dangelico, R. M. (2015). Smart cities: Definitions, 
dimensions, performance, and initiatives. Journal of Urban Technology, 22(1), 
3–21. 

Amankwah-Amoah, J. (2016). Navigating uncharted waters: A multidimensional 
conceptualisation of exporting electronic waste. Technological Forecasting and 
Social Change, 105, 11–19. 

Anand, S., & Sen, A. (2000). Human development and economic sustainability. 
World Development, 28(12), 2029–2049. 

Andrae, A. (2017). Total consumer power consumption forecast. Nordic Digital 
Business Summit, 10, 69. 

Batty, M., Axhausen, K. W., Giannotti, F., Pozdnoukhov, A., Bazzani, A., 
Wachowicz, M., Ouzounis, G., & Portugali, Y. (2012). Smart cities of the 
future. The European Physical Journal Special Topics, 214, 481–518. 

Bencsik, B., Palmié, M., Parida, V., Wincent, J., & Gassmann, O. (2023). Busi-
ness models for digital sustainability: Framework, microfoundations of value 
capture, and empirical evidence from 130 smart city services. Journal of 
Business Research, 160, 113757. 

Bose, R., & Luo, X. (2011). Integrative framework for assessing firms’ potential 
to undertake Green IT initiatives via virtualization–A theoretical perspective. 
The Journal of Strategic Information Systems, 20(1), 38–54. 

Butler, T. (2011). Compliance with institutional imperatives on environmental 
sustainability: Building theory on the role of Green IS. The Journal of Strategic 
Information Systems, 20(1), 6–26. 

Catlett, C. E., Beckman, P. H., Sankaran, R., & Galvin, K. K. (2017). Array 
of things: A scientific research instrument in the public way: platform design



18 P. ROSATI ET AL.

and early lessons learned. In Proceedings of the 2nd international workshop 
on science of smart city operations and platforms engineering (pp. 26–33). 

Chow, W. S., & Chen, Y. (2009). Intended belief and actual behavior in green 
computing in Hong Kong. Journal of Computer Information Systems, 50(2), 
136–141. 

Cillo, V., Petruzzelli, A. M., Ardito, L., & Del Giudice, M. (2019). Under-
standing sustainable innovation: A systematic literature review. Corporate 
Social Responsibility and Environmental Management, 26(5), 1012–1025. 

Cooper, V., & Molla, A. (2017). Information systems absorptive capacity 
for environmentally driven IS-enabled transformation. Information Systems 
Journal, 27 (4), 379–425. 

Corbett, J., & Mellouli, S. (2017). Winning the SDG battle in cities: How 
an integrated information ecosystem can contribute to the achievement of 
the 2030 sustainable development goals. Information Systems Journal, 27 (4), 
427–461. 

Davison, R. M. (2023). Impact and implications for practice. Information Systems 
Journal, 33(2), 187–191. 

Delgosha, M. S., Saheb, T., & Hajiheydari, N. (2021). Modelling the asym-
metrical relationships between digitalisation and sustainable competitiveness: 
A cross-country configurational analysis. Information Systems Frontiers, 23, 
1317–1337. 

Deloitte. (2023). Tech-enabled sustainability: The digital path to sustainability 
and net  zero. Available at:  https://www2.deloitte.com/content/dam/Del 
oitte/de/Documents/risk/Deloitte_Paper_Digitalisierung_und_Nachhalti 
gkeit.pdf (visited on 29 March 2024). 

DesAutels, P., & Berthon, P. (2011). The PC (polluting computer): Forever a 
tragedy of the commons? The Journal of Strategic Information Systems, 20(1), 
113–122. 

Downes, L., & Nunes, P. (2013). Big bang disruption. Harvard Business Review, 
44–56. 

Ekins, P. (2011). System innovation for environmental sustainability: Concepts, 
policies and political economy. International economics of resource efficiency: 
Eco-innovation policies for a green economy (pp. 51–88). Physica-Verlag HD. 

Elkington, J., & Rowlands, I. H. (1999). Cannibals with forks: The triple bottom 
line of 21st century business. Alternatives Journal, 25(4), 42. 

Elliot, S. (2011). Transdisciplinary perspectives on environmental sustainability: 
A resource base and framework for IT-enabled business transformation. Mis 
Quarterly, 197–236. 

Elliot, S., & Webster, J. (2017). Special issue on empirical research on infor-
mation systems addressing the challenges of environmental sustainability: An 
imperative for urgent action. Information Systems Journal, 27 (4), 367–378.



1 DIGITAL SUSTAINABILITY: KEY DEFINITIONS AND CONCEPTS 19

European Commission. (2019). The European Green Deal. Available 
at: https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-
8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF (visited on 29 March 
2024). 

Falcke, L., Zobel, A. K., Yoo, Y., & Tucci, C. (2024). Digital sustainability strate-
gies: Digitally enabled and digital-first innovation for net zero. Academy of 
Management Perspectives, (ja), amp-2023. 

Finnveden, G., Hauschild, M. Z., Ekvall, T., Guinée, J., Heijungs, R., Hellweg, 
S., Koehler, A., Pennington, D., & Suh, S. (2009). Recent developments in 
life cycle assessment. Journal of Environmental Management, 91(1), 1–21. 

Foy, G. (1990). Economic sustainability and the preservation of environmental 
assets. Environmental Management, 14, 771–778. 

George, G., Merrill, R. K., & Schillebeeckx, S. J. (2021). Digital sustainability 
and entrepreneurship: How digital innovations are helping tackle climate 
change and sustainable development. Entrepreneurship Theory and Practice, 
45(5), 999–1027. 

George, G., & Schillebeeckx, S. J. (2021). Digital sustainability and its implica-
tions for finance and climate change. Macroeconomic Review, 20(1), 103. 

Gholami, R., Watson, R. T., Hasan, H., Molla, A., & Bjorn-Andersen, N. (2016). 
Information systems solutions for environmental sustainability: How can we 
do more? Journal of the Association for Information Systems, 17 (8), 2. 

Gölzer, P., & Fritzsche, A. (2017). Data-driven operations management: Organ-
isational implications of the digital transformation in industrial practice. 
Production Planning and Control, 28(16), 1332–1343. 

Guandalini, I. (2022). Sustainability through digital transformation: A systematic 
literature review for research guidance. Journal of Business Research, 148, 456– 
471. 

Hanelt, A., Busse, S., & Kolbe, L. M. (2017). Driving business transformation 
toward sustainability: Exploring the impact of supporting IS on the perfor-
mance contribution of eco-innovations. Information Systems Journal, 27 (4), 
463–502. 

Hart, S. L., & Milstein, M. B. (2003). Creating sustainable value. Academy of 
Management Perspectives, 17 (2), 56–67. 

He, B., Niu, Y., Hou, S., & Li, F. (2018). Sustainable design from functional 
domain to physical domain. Journal of Cleaner Production, 197 , 1296–1306. 

Hedman, J., & Henningsson, S. (2016). Developing ecological sustainability: A 
green IS response model. Information Systems Journal, 26(3), 259–287. 

Helppi, O., Salo, E., Vatanen, S., Pajula, T., & Grönman, K. (2023). Review 
of carbon emissions offsetting guidelines using instructional criteria. The 
International Journal of Life Cycle Assessment, 28(7), 924–932.



20 P. ROSATI ET AL.

Huber, J. (2000). Towards industrial ecology: Sustainable development as a 
concept of ecological modernization. Journal of Environmental Policy and 
Planning, 2(4), 269–285. 

Hughes, L., Dwivedi, Y. K., Misra, S. K., Rana, N. P., Raghavan, V., & Akella, V. 
(2019). Blockchain research, practice and policy: Applications, benefits, limi-
tations, emerging research themes and research agenda. International Journal 
of Information Management, 49, 114–129. 

Ismagilova, E., Hughes, L., Dwivedi, Y. K., & Raman, K. R. (2019). Smart cities: 
Advances in research—An information systems perspective. International 
Journal of Information Management, 47 , 88–100. 

Kirchherr, J., Yang, N. H. N., Schulze-Spüntrup, F., Heerink, M. J., & Hartley, 
K. (2023). Conceptualizing the circular economy (revisited): An analysis of 
221 definitions. Resources, Conservation and Recycling, 194, 107001. 

Korte, M., Lee, K., & Fung, C. C. (2012). Sustainability in information systems: 
Requirements and emerging technologies. In 2012 International Conference 
on Innovation Management and Technology Research (pp. 481–485). IEEE. 

Kotlarsky, J., Oshri, I., & Sekulic, N. (2023). Digital sustainability in information 
systems research: Conceptual foundations and future directions. Journal of the 
Association for Information Systems, 24(4), 936–952. 

KPMG. (2024). Digitalization can give direction to your sustainability trans-
formation. Available at: https://kpmg.com/be/en/home/insights/2021/ 
07/sus-digitalization-can-give-direction-to-your-sustainability-transformation. 
html (visited on 29 March 2024). 

Kreps, D. (2018). Against nature: The metaphysics of information systems. 
Routledge. 

Kuntsman, A., & Rattle, I. (2019). Towards a paradigmatic shift in sustainability 
studies: A systematic review of peer reviewed literature and future agenda 
setting to consider environmental (Un) sustainability of digital communica-
tion. Environmental Communication, 13(5), 567–581. 

Kurp, P. (2008). Green computing. Communications of the ACM, 51(10), 11–13. 
Lawler, E. (2012). Sustainability: It should be about more than the bottom line. 

Forbes. Available at: http://www.forbes.com/sites/edwardlawler/2012/03/ 
15/sustainability-it-should-be-about-more-than-the-bottom-line/#359967 
877cfc (visited on 29 March 2024). 

Leidner, D. E., Sutanto, J., & Goutas, L. (2022). Multifarious roles and conflicts 
on an interorganizational green IS. MIS Quarterly, 46(1). 

Loeser, F., Recker, J., Brocke, J. V., Molla, A., & Zarnekow, R. (2017). 
How IT executives create organizational benefits by translating environ-
mental strategies into Green IS initiatives. Information Systems Journal, 27 (4), 
503–553.



1 DIGITAL SUSTAINABILITY: KEY DEFINITIONS AND CONCEPTS 21

Loock, C. M., Staake, T., & Thiesse, F. (2013). Motivating energy-efficient 
behavior with green IS: An investigation of goal setting and the role of 
defaults. MIS Quarterly, 1313–1332. 

Lynn, T., Rosati, P., Conway, E., Curran, D., Fox, G., & O’Gorman, C. (2022). 
Digital towns: Accelerating and measuring the digital transformation of rural 
societies and economies (p. 213). Springer Nature. 

Lynn, T., Rosati, P., Kassem, M., Krinidis, S., & Kennedy, J. (2023). Disrupting 
buildings: Digitalisation and the transformation of deep renovation (p. 175). 
Springer Nature. 

Lynn, T., Rosati, P., Egli, A., Krinidis, S., Angelakoglou, K., Sougkakis, V., 
Tzovaras, D., Kassem, M., Greenwood, D., & Doukari, O. (2021). RINNO: 
Towards an open renovation platform for integrated design and delivery of 
deep renovation projects. Sustainability, 13(11), 6018. 

Mair, J., & Gegenhuber, T. (2021). Open social innovation. Stanford Social 
Innovation Review, 19(4), 26–33. 

Malhotra, A., Melville, N. P., & Watson, R. T. (2013). Spurring impactful 
research on information systems for environmental sustainability. MIS Quar-
terly, 37 (4), 1265–1274. 

Martin, A., & Grudziecki, J. (2006). DigEuLit: Concepts and tools for digital 
literacy development. Innovation in Teaching and Learning in Information 
and Computer Sciences, 5(4), 249–267. 

Matt, C., Hess, T., & Benlian, A. (2015). Digital transformation strategies. 
Business and Information Systems Engineering, 57 , 339–343. 

McGregor, R. V., Eng, P., & MacIver, A. (2003). Regional its architectures— 
From policy to project implementation. Proceedings of the Transportation 
Factor. 

McLennan, J. F. (2004). The philosophy of sustainable design: The future of 
architecture. Ecotone publishing. 

Melville, N. P. (2010). Information systems innovation for environmental 
sustainability. MIS Quarterly, 1–21. 

Nishant, R., Teo, T. S., & Goh, M. (2017). Do shareholders value green infor-
mation technology announcements? Journal of the Association for Information 
Systems, 18(8), 3. 

Northmore, L., & Hudson, M. D. (2022). Digital environmental impact 
assessment: An exploration of emerging digital approaches for non-technical 
reports. Environmental Impact Assessment Review, 92, 106689. 

Pan, S. L., Carter, L., Tim, Y., & Sandeep, M. S. (2022). Digital sustainability, 
climate change, and information systems solutions: Opportunities for future 
research. International Journal of Information Management, 63, 102444. 

Pan, S. L., & Zhang, S. (2020). From fighting COVID-19 pandemic to tackling 
sustainable development goals: An opportunity for responsible information



22 P. ROSATI ET AL.

systems research. International Journal of Information Management, 55, 
102196. 

Philip, L., Cottrill, C., Farrington, J., Williams, F., & Ashmore, F. (2017). The 
digital divide: Patterns, policy and scenarios for connecting the ‘final few’ in 
rural communities across Great Britain. Journal of Rural Studies, 54, 386– 
398. 

Sachs, J. D., Schmidt-Traub, G., Mazzucato, M., Messner, D., Nakicenovic, 
N., & Rockström, J. (2019). Six transformations to achieve the sustainable 
development goals. Nature Sustainability, 2(9), 805–814. 

Savitz, A. (2013). The triple bottom line: How today’s best-run companies are 
achieving economic, social and environmental success-and how you can too. 
Wiley. 

Shi, S., & Yin, J. (2021). Global research on carbon footprint: A scientometric 
review. Environmental Impact Assessment Review, 89, 106571. 

Spangenberg, J. H. (2005). Economic sustainability of the economy: Concepts 
and indicators. International Journal of Sustainable Development, 8(1–2), 47– 
64. 

Sparviero, S. (2021). The contribution of global media to ethical capitalism. In 
The Routledge Handbook of Digital Media and Globalization (pp. 55–65). 
Routledge. 

Sparviero, S., & Ragnedda, M. (2021). Towards digital sustainability: The long 
journey to the sustainable development goals 2030. Digital Policy, Regulation 
and Governance, 23(3), 216–228. 

Stuermer, M., Abu-Tayeh, G., & Myrach, T. (2017). Digital sustainability: Basic 
conditions for sustainable digital artifacts and their ecosystems. Sustainability 
Science, 12(2), 247–262. 

Tello, S. F., & Yoon, E. (2008). Examining drivers of sustainable innovation. 
International Journal of Business Strategy, 8(3), 164–169. 

Tsosie, R. (2009). Climate change, sustainability and globalization: Charting the 
future of Indigenous environmental self-determination. Envtl. & Energy L. & 
Pol’y J ., 4, 188. 

Tuballa, M. L., & Abundo, M. L. (2016). A review of the development of Smart 
Grid technologies. Renewable and Sustainable Energy Reviews, 59, 710–725. 

Tulloch, L., & Neilson, D. (2014). The neoliberalisation of sustainability. 
Citizenship, Social and Economics Education, 13(1), 26–38. 

United Nations (2015). Global Sustainable Development Report. United 
Nations. Available at: https://sustainabledevelopment.un.org/content/ 
documents/1758GSDR%202015%20Advance%20Unedited%20Version.pdf 
(visited on 29 March 2024). 

United Nations General Assembly (2015), Transforming our world: the 2030 
agenda for sustainable development. Available at: https://sdgs.un.org/203 
0agenda (visited on 29 March 2024).



1 DIGITAL SUSTAINABILITY: KEY DEFINITIONS AND CONCEPTS 23

United Nations (2024). Sustainable Digitalization. Available at: https://www. 
unep.org/topics/digital-transformations/sustainable-digitalization (visited on 
29 March 2024). 

United Nations Global Compact (2024). Social Sustainability. Available 
at: https://unglobalcompact.org/what-is-gc/our-work/social (visited on 29 
March 2024). 

Vale, Z., Gomes, L., & Ramos, C. (2023). An overview on smart buildings 
(pp. 431–440). Elsevier. 

Vallance, S., Perkins, H. C., & Dixon, J. E. (2011). What is social sustainability? 
A Clarification of Concepts. Geoforum, 42(3), 342–348. 

Verhoef, P. C., Broekhuizen, T., Bart, Y., Bhattacharya, A., Dong, J. Q., 
Fabian, N., & Haenlein, M. (2021). Digital transformation: A multidisci-
plinary reflection and research agenda. Journal of Business Research, 122, 
889–901. 

Vial, G. (2021). Understanding digital transformation: A review and a research 
agenda. Managing digital transformation, 13–66. 

von Kutzschenbach, M., & Daub, C. H. (2020). Digital transformation for 
sustainability: A necessary technical and mental revolution. New trends in 
business information systems and technology: Digitall innovation and digital 
business transformation (pp. 179–192). Springer International Publishing. 

Watson, R. T., Boudreau, M. C., & Chen, A. J. (2010). Information systems 
and environmentally sustainable development: Energy informatics and new 
directions for the IS community. MIS Quarterly, 23–38. 

Watson, R. T., Elliot, S., Corbett, J., Farkas, D., Feizabadi, A., Gupta, A., Iyer, 
L., Sen, S., Sharda, R., Shin, N., Thapa, D., & Webster, J. (2021). How 
the AIS can improve its contributions to the UN’s sustainability development 
goals: Towards a framework for scaling collaborations and evaluating impact. 
Communications of the Association for Information Systems, 48(1), 42. 

Willard, B. (2012). The new sustainability advantage: Seven business case benefits 
of a triple bottom line. New Society Publishers. 

World Commission of Environment and Development (1987). Report of the 
world commission on environment and development: our common future. 
Available at: https://sustainabledevelopment.un.org/content/documents/ 
5987our-common-future.pdf (visited on 29 March 2024). 

Zeiss, R., Ixmeier, A., Recker, J., & Kranz, J. (2021). Mobilising information 
systems scholarship for a circular economy: Review, synthesis, and directions 
for future research. Information Systems Journal, 31(1), 148–183. 

Zhang, A., Venkatesh, V. G., Liu, Y., Wan, M., Qu, T., & Huisingh, D. (2019). 
Barriers to smart waste management for a circular economy in China. Journal 
of Cleaner Production, 240, 118198.



24 P. ROSATI ET AL.

Zhang, H., Liu, L., & Li, T. (2011). Designing IT systems according to envi-
ronmental settings: A strategic analysis framework. The Journal of Strategic 
Information Systems, 20(1), 80–95. 

Zimmer, M. P., & Järveläinen, J. (2022, August). Digital–sustainable co-
transformation: introducing the triple bottom line of sustainability to digital 
transformation research. In IFIP International Conference on Human Choice 
and Computers (pp. 100–111). Springer International Publishing. 

Open Access This chapter is licensed under the terms of the Creative Commons 
Attribution 4.0 International License (http://creativecommons.org/licenses/ 
by/4.0/), which permits use, sharing, adaptation, distribution and reproduction 
in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the 
chapter’s Creative Commons license, unless indicated otherwise in a credit line 
to the material. If material is not included in the chapter’s Creative Commons 
license and your intended use is not permitted by statutory regulation or exceeds 
the permitted use, you will need to obtain permission directly from the copyright 
holder.



CHAPTER 2  

Green IT: The Evolution of Environmental 
Concerns Within ICT Policy, Research 

and Practice 

Per Fors, David Kreps, and Ann O’Brien 

Abstract This chapter delves into the environmental concerns associ-
ated with Information and Communications Technology (ICT) along its 
value chain, understood as the series of activities that need to be under-
taken to produce, use and dispose of ICT. These activities have their

P. Fors (B) 
Department of Civil and Industrial Engineering, Uppsala University, 
Lägerhyddsvägen 1, 75237 Uppsala, Sweden 
e-mail: per.fors@angstrom.uu.se 

D. Kreps 
Lero – Science Foundation Ireland Research Centre for Software, 
University of Galway, Galway, Ireland 
e-mail: david.kreps@universityofgalway.ie 

A. O’Brien 
J.E. School of Business and Economics, 
University of Galway, Galway, Ireland 
e-mail: ann.obrien@universityofgalway.ie 

© The Author(s) 2024 
T. Lynn et al. (eds.), Digital Sustainability, Palgrave Studies in Digital 
Business & Enabling Technologies, 
https://doi.org/10.1007/978-3-031-61749-2_2 

25



26 P. FORS ET AL.

respective challenges in terms of environmental sustainability, including 
greenhouse gas (GHG) emissions, pollution and waste. Furthermore, the 
chapter offers an overview of practices and discourses, particularly within 
the realm of information systems (IS), since the 1960s and onwards. 
It traces the evolution of the Green IT, a concept that originated in 
response to mounting environmental concerns and the widespread inte-
gration of ICT into various facets of society around the mid-2000s. The 
chapter explores the translation of Green IT, which was mainly concerned 
with the negative environmental impact of ICT, into Sustainable ICT, 
a broader concept imbued with more optimistic narratives about the 
environmental impact of ICT. Drawing from this extensive review, the 
chapter highlights emerging issues, such as the energy consumption of 
ICT with the advent of AI and cryptocurrencies, and a growing emphasis 
on repair and refurbishment. The authors then interpret the interest in 
these emerging issues as a renewed focus on mitigating the negative 
impacts of ICT within Sustainable ICT. 

Keywords Sustainable ICT · Green IT · Sustainable development · 
ICT · Evolution of Green IT 

2.1 Introduction 

Since the introduction of the first microprocessor in the 1970s, the 
pervasive influence of Information and Communications Technology 
(ICT) has reshaped the fabric of society. With regard to the envi-
ronment, it is often assumed that ICTs can potentially be used to 
promote sustainability (Gholami et al., 2016; Malhotra et al., 2013), 
e.g., through the dematerialisation of the economy, optimisation of indus-
trial processes and promoting sustainable behaviours and practices (Fors, 
2019; Zapico, 2013). However, currently ICTs are predominantly used 
for other reasons, such as to boost economic performance, thereby inten-
sifying the environmental impact of the technology (Lennerfors et al., 
2015). Therefore, it is vital that the technology itself is sustainable in 
its production, use and disposal, which is currently not the case. On the 
contrary, ICT presents a variety of challenges concerning environmental 
sustainability, including the generation waste and carbon dioxide (CO2) 
emissions (Forti et al., 2020; Koot & Wijnhoven, 2021; Kreps & Fors,
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2020; Perzanowski, 2022). While the potential for using ICT as green 
tech (greening by ICT) is by far greater in theory and often emphasised 
in contemporary discourse, we advocate for maintaining a strong focus 
on the greening of ICT itself and its value chain(s). 

This chapter provides an overview of the environmental concerns of 
ICT and a historical narrative of these concerns in research and practice 
since the 1960s. The review methodology is inspired by the hermeneutic 
approach (Boell & Cecez-Kecmanovic, 2014). We argue that the battle 
to consider even a human environmental context for information systems 
(IS) took so long, and other developments such as the advent of the 
Internet took up so much of scholars’ attention, that the impact of ICT 
on the non-human environment only began to be appreciated in the 
IS literature after the turn of the millennium. We chart the change in 
conceptualisation of Green IT from being concerned largely with energy 
efficiency and cost-effectiveness, to a Green IT that emphasises user 
behaviours reflecting the changing perception of digital sustainability. The 
remainder of this chapter is structured as follows. Section 2.2 presents 
the current environmental challenges of the ICT value chain. Section 2.3 
provides a historical narrative of environmental concerns within the ICT 
industry since the advent of ICT. Section 2.4 turns the attention to 
emerging trends, and to those concerns we deem likely to be of most 
significance in the field of Green IT in the coming years. Finally, Sect. 2.5 
concludes the chapter with some final remarks. 

2.2 The Environmental Impact 

of ICT Along Its Value Chain 

Producing, using and disposing of ICT will always cause some level of 
environmental harm, due to the physical nature of these products. The 
impacts of these activities may range in their degree of harm and, at 
best, be climate neutral, but they can never contribute positively to envi-
ronmental sustainability (Aebischer & Hilty, 2015; Berkhout & Hertin 
2021). Greening of ICT—or simply Green IT in its original formulation 
(Murugesan, 2008)—primarily focusses on minimising the environmental 
impacts associated with ICT across the entire value chain. The value chain 
of ICT products refers to the distinct phases of extraction of raw mate-
rials, design, manufacturing and transportation, use and disposal (Fors, 
2019). The following subsections summarise the more harmful impacts 
associated with ICT along its value chain.
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Extraction of Raw Materials 

ICT devices are known for their complex material composition. A single 
smartphone requires 75 different elements to produce, ranging from 
plastic and copper to 16 of the 17 known rare earth elements (REEs) 
(Humphries, 2016). While one device weighs approximately 128 grams 
(Merchant, 2017), its production necessitates the extraction of 34 kilo-
grams of ore from the earth. This implies that roughly 99.97% of the 
material extracted ends up as waste even before the device is disposed 
of. Many ICT companies like to point out that their products consist 
of recycled materials. Intel, which is one of the more outspoken ICT 
companies in terms of their sustainability efforts, often talks about the 
circularity of their products and business models (Intel, 2022). Apple 
(2022), often described as the industry leader in terms of sustainability, 
proudly presented in a recent sustainability report that they used up to 
20% recycled materials in their products, meaning that 80% of the mate-
rial used in the 225 million iPhones and the 26 million MacBooks they 
sold in 2022 were virgin materials. The waste generated from mining 
activities can be toxic and pollute the land, air and water supplies in areas 
where the ore is mined. Furthermore, industrial-scale mining activities 
often make use of machinery powered by fossil fuels, which contribute to 
climate change. 

When ore is refined into useful materials, there are other environ-
mental issues that need to be taken into consideration. Refining ore is 
a water-intensive process that threatens local supplies of drinking water 
(Meißner, 2021). Furthermore, it creates various by-products that, if not 
properly handled, can seep into nearby surroundings, leading to envi-
ronmental damage and posing health risks to individuals exposed to the 
waste (Perzanowski, 2022). The fact that many of the materials used in 
ICTs are extracted in developing countries, while the products themselves 
are mainly used in developed countries, results in an unequal exchange 
of resources and environmental impacts between rich and poor nations 
(Hornborg, 2001; Lennerfors et al., 2015). 

The ICT industry is heavily reliant on conflict minerals, such as tin, 
tantalum, tungsten, gold (3TGs) (Fitzpatrick et al., 2015) and  to  some  
extent coltan (Bleischwitz et al., 2012). These minerals are often sourced 
from the Democratic Republic of Congo (DRC), where ICT companies 
run the risk of funding militarised groups that control artisanal mines 
in conditions akin to modern-day slavery. Many ICT companies have
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claimed that to stop sourcing from the DRC is not a viable alternative 
(Patel, 2016), and instead the region has been described as a laboratory 
for various sustainable supply chain initiatives. However, the widespread 
corruption in the country prevents transparency, leading researchers 
to assume that these companies may still be indirectly supporting the 
conflicts (Aula, 2020). While the problem of conflict minerals is mainly a 
social issue, it may also have some implications for environmental sustain-
ability, since the corruption and the political fragility and instability of 
the areas prevent policies and frameworks for environmentally conscious 
extraction (Rhode, 2019). 

Design, Manufacturing and Transportation 

Designing and manufacturing ICT devices is both electricity and water 
intensive, and will always result in various streams of waste and by-
products that need to be handled (Arushanyan, 2016).  In  the case of  
most devices, particularly smaller ones such as laptops and smartphones, 
the bulk of their carbon footprint has already been generated before they 
reach the hands of the consumer (Perzanowski, 2022). For an iPhone, 
approximately 81% of its total emissions stems from processes involving 
the extraction of raw materials, production, manufacturing and the trans-
portation of the device (Greenly Institute, 2023), depending on the 
electricity mix where the iPhone will later be used and the length of its 
useful life. While the total figure is quite modest—approximately 70kg of 
CO2 throughout its lifecycle—the immense number of units sold globally 
translates to a significant overall environmental impact. A laptop, which 
generally lasts longer than a smartphone but generates more emissions in 
the use phase, emits approximately 200–500kg of CO2 emissions as it is 
manufactured (Belkhir & Elmeligi, 2018). Freitag et al. (2021) suggest 
that for most user devices (e.g., laptops and smartphones), approximately 
half of the emissions are ‘embedded’, meaning that they occur in the 
extraction and manufacturing phase. Today, especially the production of 
Solid State Drives (SSDs) is extremely carbon intensive compared with 
conventional mechanical hard drives (Tannu & Nair, 2023). 

Because of the complex material composition of ICT devices, materials 
need to be sourced from all around the globe, leading to increased emis-
sions from transportation both upstream and downstream in their supply 
chains. Intel, for instance, contracts more than 9000 suppliers located in 
89 different countries to, among other things, supply the materials for
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their manufacturing process (Intel, 2021). Most materials and compo-
nents are transported using oceangoing ships that emit not only CO2 but 
other pollutants such as sulphur dioxide and nitrogen oxides (Stathatou 
et al., 2022). Although oceangoing vessels are known for their substantial 
pollution, their capacity to transport large loads results in per-unit emis-
sions that are nearly negligible. Still, devices must be delivered to homes 
and offices, and this is often done using medium-duty freight vehicles that 
are much less efficient on a per-unit basis (Perzanowski, 2022). Amazon, 
a prominent player in the delivery of such devices, was responsible for a 
substantial 19 million metric tons of carbon emissions in a single year, 
primarily attributable to their logistics operations (Ivanova, 2019). 

Use 

ICTs in their use phase contribute to an increasing portion of CO2 
emissions globally. Freitag et al. (2021) conclude that the global CO2 
footprint of ICTs, in the use phase, contributes to somewhere between 
1.8 and 2.8% of the global emissions, which is in line with early esti-
mates by Gartner Institutes (Mingay, 2007). The emissions from most 
user devices have been lowered substantially over the past 20–25 years 
due to technological innovation and new legislation and policy, such as 
the Energy Star1 and the TCO Certified2 certifications. Still, as the total 
number of devices in use is constantly increasing, the overall emissions 
from ICT in this phase are still on the rise (Allianz, 2023). 

While some research suggests that the overall emissions from ICT in 
the use phase might plateau due to energy-efficient servers and renew-
able energy sources (Malmodin, 2019), emissions from data centres 
currently contribute to a substantial portion of the overall CO2 emis-
sions from ICT (Andre & Edler, 2015; Belkhir & Elmeligi, 2018). This 
is mainly attributed to the usage phase, as these devices are energy 
intensive and typically remain operational at all times (Freitag et al., 
2021). Media streaming contributes to the increased demand of data 
centres, and emerging streaming-related practices and technologies, such 
as ultra-high definition (UHD) streaming (Schwarz, 2022), ‘media multi-
tasking’ (Widdicks et al., 2019) and streamed video games (Marsden

1 https://www.energystar.gov/ 
2 https://tcocertified.com/ 



2 GREEN IT: THE EVOLUTION OF ENVIRONMENTAL … 31

et al., 2020), may well result in increased emissions from data centres. 
Emerging technologies like Artificial Intelligence (AI) and blockchain are 
currently consuming immense amounts of electricity, with AI, in partic-
ular, expected to be a major driver of the rising electricity consumption 
within the ICT sector in the foreseeable future (Ferré, 2023). In a recent 
report, it is projected that, given current trends but assuming a rela-
tively unchanged electricity mix, ICTs could generate emissions exceeding 
830 metric tons (MT) of CO2 by 2030 (Allianz, 2023), surpassing even 
those of the airline industry. Nevertheless, there is a silver lining since 
the emissions from ICT usage are intricately linked to the composition 
of the electricity mix, implying that successful transitions to more sustain-
able energy systems by countries could substantially mitigate the adverse 
environmental effects of the ICT industry. 

Disposal 

ICT devices consist of complex material compositions, but also software, 
that make them difficult to repair, refurbish or recycle properly (Kreps & 
Fors, 2020). ICT companies also have very little incentive to produce 
long-lasting devices, as the business imperative is to have customers 
replace their devices with new ones as quickly as possible (Perzanowski, 
2022). According to the European Commission (2023), ICT products 
are often disposed of prematurely, leading to 35 million tons of waste, 
30 million tons of resource depletion and 261 million tons of GHG 
emissions within the European Union (EU) annually. For many decades, 
electronic waste (e-waste), which includes but is not limited to disposed 
ICT devices, has for a long time been the fastest-growing waste stream 
globally (Cucchiella, 2015). The waste is often toxic and can contain 
arsenic, lead, mercury and other toxins, and only approximately 15% of 
this waste undergoes proper recycling (Ruiz, 2023). The problem is also 
unequally distributed among the world system (Lennerfors et al., 2015). 
Despite measures to prevent illegal export of e-waste, much of the waste 
accumulated in the Global North is exported to the Global South as 
second-hand goods (Umair et al., 2016). Here, e-waste is informally recy-
cled without proper tools or protective equipment, leading to workers 
being exposed to mercury fumes, dioxins and cadmium dust and pollu-
tants released into both the air and water reserves (Prakash et al., 2012; 
Umair et al., 2016).
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E-waste contains a significantly higher percentage of valuable materials 
compared to ore (Kreps & Fors, 2020). For example, one metric ton of 
circuit boards may hold between 40 and 800 times the quantity of gold 
and 30–40 times the amount of copper obtained from one metric ton of 
ore (Bizzo et al., 2014). Still, ‘urban mining’ has not yet become econom-
ically feasible in the developed world, primarily due to the low cost of 
sourcing virgin materials. This is just one of the many challenges that 
currently prevent circularity within the ICT industry. Traditionally, the 
focus has been on increasing the recycling rate, but as Perzanowski (2022) 
shows, the sheer amount of new e-waste accumulated each year greatly 
exceeds the capacity of the existing recycle infrastructure. It may therefore 
be more sensible to reduce the rate of e-waste accumulation by designing 
products with longer lifespans that can be easily repaired and upgraded. 
As expressed by Patrignani and Whitehouse (2014, p. 84), promoting 
environmentally friendly ICT necessitates embarking on a ‘quest to slow 
down the ICT lifecycle’. 

2.3 The Evolution of Green 

IT and Sustainable ICT 

Since the dawn of the environmental movement and the widespread adop-
tion of ICT, in parallel with the emergence of the field of IS in the 
mid-twentieth century, the core ideas of Green IT have emerged—slowly, 
and at times against the odds—in research, practice, and policy. Further-
more, once established, there has been a gradual shift from Green IT to 
the more optimistic discourse of Sustainable ICT. The early days of ICT 
coincided with the rise of the environmental movement in the 1960s, and 
while global environmental concerns such as climate change were not 
yet on the agenda, these first two decades saw first an increased aware-
ness of concerns such as electronic waste and toxic chemicals used in 
the production processes. Later, primarily due to the oil crisis, attention 
shifted to problems associated with the energy consumption of the large 
mainframes adopted by organisations worldwide (see Table 2.1). Some 
ICT companies during these decades implemented power-saving features 
and even recycled the heat from their data centres into the central heating 
system, or to heat nearby offices in order to save oil and money (Fors & 
Lennerfors, 2018). The focus on decreasing energy consumption of ICT 
continued in the 1980s and 1990s due to the rapid adoption of ICT, 
not least personal computers (PCs) with over dimensioned power supplies
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(Norford et al., 1988). An important realisation during these decades was 
that most ICT products consumed almost as much power in stand-by 
mode as when they were fully operational, and in particular in the 1990s, 
the reduction of stand-by losses became the leitmotif of policy activities 
in the field of ICT (Aebischer & Hilty, 2015), with examples such as 
Energy Star and TCO Certified. The increase in power consumption of 
ICT eventually gave rise to the concept of Green computing. Simpson 
(1996) noted computers as the fastest-growing electrical load in business, 
with a fivefold increase in energy consumption over a decade. E-waste 
policy was also becoming more refined during these decades, with the 
Basel Convention3 being adopted in 1989, which among other things 
banned the export of e-waste to developing countries. Given the growing 
concern for environmental sustainability within practice and policy in the 
1980s and 1990s, surprisingly little attention was devoted to these issues 
within the academic field of ICT during this time. In the ensuing decades, 
public awareness grew regarding the significant contribution of the ICT 
industry to global CO2 emissions.

While energy-conserving features and strategies had been implemented 
earlier for cost-saving purposes, it was in the 2000s and 2010s that the 
link between ICT and global warming became widely recognised. Melville 
(2010) highlights that environmental sustainability was notably absent 
from the contents of the ‘basket of 8’ IS journals until as late as 2003, 
and in 2007—when Elliot (2007, p. 109) suggested that ‘environmental 
sustainability of ICT should be seen as a sustainable topic in the main-
stream of IS research’—the concept of Green IT emerged. One could 
say that it originated as a response to diverse environmental issues asso-
ciated with ICT, encompassing concerns like e-waste and the widespread 
use of various chemicals in the industry. However, its primary emphasis 
and key selling point were addressing the climate impact of ICT, which 
at the time was estimated at two percent of the global emissions (Mingay, 
2007). This marked a sudden realisation for the IS field where positivist 
approaches, for many decades, had in various aspects been complicit in the 
ICT-related factors contributing to climate change (Kreps, 2018). The 
introduction of the concept grouped pre-existing strategies for fostering 
environmentally sustainable ICT practices under the umbrella of Green 
IT (Murugesan, 2008). While mitigating the negative effects of ICT was

3 https://www.basel.int/. 
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Table 2.1 Evolution of Green IT 

Time period Highlights from practice Highlights from IS research 

1960s and 
70s

• Establishment of the US 
Environmental Protection 
Agency (EPA) (1970)

• First UN Conference on the 
Human Environment, 
Stockholm (1972)

• Enactment of the US Resource 
Conservation and Recovery 
Act (RCRA) (1976)

• Hirschheim and Klein’s (2012) 
‘First Era’

• Exclusively technological 
imperatives in Management of 
Information systems (MIS)

• Scant mention of the impact of 
ICTs upon human beings, let alone 
the non-human environment

• Gradual inception of sociotechnical 
approaches (Bostrom & Heinen, 
1977)

• 1st IFIP Human Choice and 
Computers conference (1974)

• Technical Committee 9 on ICT 
and Society (1976) 

1980s and 
90s

• Energy efficiency drives in 
response to rise in personal 
computers and related energy 
use—particularly in ‘stand-by’ 
mode
• Basel Convention on the 

Control of Transboundary 
Movements of Hazardous 
Wastes and Their Disposal 
(1989)

• US EPA began addressing 
e-waste informally (1990s)

• Continued rising electricity 
consumption of ICT 
equipment promotes notion of 
Green computing

• Promotion of user participation 
in system development 
processes

• Hirschheim and Klein’s (2012) 
‘Second’ and ‘Third Eras’

• 1st International Conference on 
Information Systems (ICIS) (1980)

• Founding of Association for 
Information Systems (AIS) (1994)

• Journals recognised later as the 
‘Basket of 8’ begin to become 
established

• Positivism challenged by reference 
disciplines arriving in Information 
Systems: Philosophy of Technology 
(e.g., Kuhn 1962), Sociology of 
Technology (e.g., Mackenzie and 
Wajcman 1985), Science and 
Technology Studies (e.g., Bijker, 
1993), Foucault studies (e.g., 
Discipline and Punish 1975) and 
Bourdieu studies (e.g., Logic of 
Practice 1990)

• Emphasis on user ‘acceptance’

(continued)
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Table 2.1 (continued)

Time period Highlights from practice Highlights from IS research

2000s and 
2010s

• Notion of Green IT (2007)
• Publication of the EU Waste 

Electrical and Electronic 
Equipment (WEEE) Directive 
(2003 then revised in 2012)

• Notion of Circular Economy 
promoted by the Ellen 
MacArthur Foundation (2013)

• Ethical goals and critical 
approaches (Walsham, 2012) gain  
traction in IS

• Responsible research and 
innovation (Stahl, 2012)

• Genuinely useful research (Rai, 
2017)

• Green IS tracks at AIS conferences
• Sustainability-related special issues 

in the premier journals

the main objective for Green IT initiatives in the early days, the poten-
tial of ICT to be used to promote sustainability in other areas of society, 
for example through the use of videoconferencing and telepresence tech-
nologies, or through carbon accounting and tracking (Mingay, 2007), was 
soon recognised. 

Although this facet was initially associated with Green IT, subse-
quent perspectives generally classify it under Green IS or Sustainable ICT. 
This more optimistic discourse grew rapidly after the introduction of 
Green IT, not least with the help of the Global e-Sustainability Initia-
tive’s (GeSI) inaugural SMART series reports. Well-received by industry 
professionals, policymakers and scholars, these reports highlighted the 
potential of the ICT sector to enhance the sustainability of society as a 
whole, suggesting that ICT-based solutions decrease CO2 emissions by 
up to 20% globally by 2030 (GeSI, 2015). A few years later, UNEP’s 
International Resource Panel published a comprehensive report outlining 
steps for achieving sustainable development. The report emphasised the 
role of ICTs and technological solutions in decoupling economic growth 
from carbon emissions, promoting environmental sustainability along-
side maintained economic growth (Hilty et al., 2011; UNEP,  2011). 
We argue that this optimistic discourse about the relation between ICT 
and sustainability took over in the late 2000s. However, in the 2020s— 
perhaps due to reports of massive emissions stemming from data centres 
worldwide as the result of video streaming, training AI models and main-
taining cryptocurrencies—the main arguments of Green IT are regaining 
relevance.
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2.4 The Relevance of Green 

IT Today and in the Future 

Here we present a sample of contemporary issues that are currently 
emphasised in research, practice and policy. The majority of these aspects 
are not new per se, but interest in them has been renewed due to recent 
events such as the COVID-19 pandemic, the war in Ukraine, the rise of 
emerging technologies and the (un)availability of raw materials resulting 
from various geopolitical tensions. 

The Environmental Effects of Emerging Technologies 

Since the late 2010s there has been a rapid development of AI, 
blockchain, Augmented and Virtual Reality (AR and VR). These tech-
nologies alter how we engage with and navigate the boundaries between 
the virtual and the physical, and find applications across gaming, enter-
tainment, education, healthcare and production. It is assumed that these 
technologies may help to further sustainability efforts in various ways in 
the future (Davis et al., 2023), including minimising the necessity for 
travelling (Krupnova et al., 2020; Talwar et al., 2022). However, they 
also present new sets of environmental challenges (Leffer, 2023). 

AR and VR devices pose environmental challenges including the 
demand for rare and critical materials, and specifically new e-waste chal-
lenges due to device repair difficulties. This is because wearable devices 
need to be light and extremely compact, which limits the possibilities of 
repair (Perzanowski, 2022). For instance, it was recently found in a review 
of Apple’s new VR headset Apple Vision Pro by the Phone Repair Guru 
(2024) that the device is currently unrepairable. 

While AI has seen extensive use in certain industrial sectors and in 
finance, healthcare and education, the general public started to encounter 
and actively engage with AI with the release of Large Language Models 
(LLMs) and various image generating applications. The penetration of 
these applications in society has given rise to discussions concerning ethics 
and sustainability. Van Wynsberghe (2021) and Crome et al. (2024) argue 
that research tends to focus on the potential of AI to solve various 
sustainability-related problems and overcome sustainability-related chal-
lenges in various sectors, including agriculture, banking, healthcare and 
energy. Coeckelbergh (2021), for example, argues that AI has the poten-
tial to help mitigate climate change and various other environmental
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concerns, and Ludvigsen (2023) shows how using AI models to write or 
to generate images could potentially save energy compared with manual 
labour. Still, as both Coeckelbergh (2021) and Van Wynsberghe (2021) 
show, the impact of AI on environmental sustainability is predominantly 
negative at present, since AI contributes to increased energy consump-
tion. OpenAI has disclosed that it used 25,000 Nvidia GPUs (Graphics 
Processing Units) for 100 days, consuming approximately 50 Gigawatt 
hours (GWh)) of energy, in the process of training a single LLM, GPT-
4 (Patel & Wong, 2023). Lai (2023) concludes that the energy used to 
train the specific language model is equivalent to the energy consumption 
of 1000 average US households over five-to-six years. 

Blockchain technologies are perceived as potentially beneficial in supply 
chain management, voting systems and healthcare. Davis et al. (2023) 
present positive applications of blockchain for environmental sustain-
ability, demonstrating instances such as utilising excess heat from data 
centres for wood drying and incentivising clean energy production. 
Today, the technology is mainly used to enable cryptocurrencies, most 
notably Bitcoin. Much research has focussed on the immense electricity 
consumption of this currency, which has been compared to that of a small 
country. The Cambridge Centre for Alternative Finance (2024) recently 
estimated that the power demand of Bitcoin in 2023 was approximately 
121.13 Terawatt hours (TWh). Limiting the negative climate impact 
of this immense electricity consumption, for example through transi-
tioning towards more energy-efficient consensus algorithms, is therefore 
considered a high priority (Saleh, 2021; Varavallo et al., 2022). 

The Environmental Impacts of the Data-Driven Digital Revolution 

There is a widespread assumption that digitalisation generally will play 
a pivotal role in contributing to several of the United Nations’ (UN) 
Sustainable Development Goals (SDGs). Initiatives to improve educa-
tion, healthcare and clean energy production often rely heavily on ICT, 
especially on efficient transmission of data. Globally, the volume of data 
generated, captured, duplicated and consumed has increased almost expo-
nentially, especially since the pandemic, from 41 zettabytes (ZB) in 2019 
with a projected growth to 181 ZB in 2025 (Statista, 2023). While the 
growth in data generation and transmission can be attributed mainly 
to cloud computing and media streaming, we must now also take into 
account the high-performance computing power required to analyse the
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vast amounts of data generated by the Internet of Things (IoT) as more 
devices in both industries and households contribute to data generation 
and transmission (Gray, 2018). While access to new information provided 
by this data can identify important insights for decision making, the 
impact of this energy consumption is said to be in the region of 23% 
of the total CO2 emissions from ICT (Ganesan et al., 2020). Mitigating 
this huge increase, virtual machine consolidation in green cloud software 
engineering has been used to support energy-efficient cloud infrastruc-
ture (Ganesan et al., 2020). As the number of data centres multiplies to 
accommodate increasing demand, the use of cloud computing becomes 
ubiquitous, the greening of the cloud becomes even more important; this 
includes resource allocation mechanisms that aim to efficiently use and 
distribute cloud resources (Kumar et al., 2022). 

While energy efficiency in data centres has increased significantly, the 
need for data transmission is increasing even faster, leading to increased 
climate impact in absolute terms (Andrae & Edler, 2015). Policy initia-
tives that aim to support data-driven initiatives are just starting (Lucivero 
et al., 2020). Organisations heavily dependent on data centres are often 
hesitant to disclose data on their environmental impact, as there are 
limited incentives for them to make such information publicly available 
(Crawford et al., 2019). In order to exploit the sustainability-related 
potential of the data-driven digital revolution, it is essential to address 
the escalating energy consumption of data centres globally. Therefore, the 
European Commission (2020a) has recently decided that energy-efficient 
cloud computing should be a top priority in Europe, and sets out to 
achieve climate-neutral data centre operations no later than 2030. 

Circularity of ICT: Refurbishing and the Right to Repair 

Perzanowski (2022) shows how manufacturers of technological devices 
have deliberately created obstacles, including design, business and legal 
barriers, to impede repairs, thus compelling consumers to buy new devices 
rather than extending the lifespan of their current ones. In 2020, the 
European Commission (2020b) adopted the new Circular Economy 
Action Plan (CEAP) that introduces initiatives along the value chain of 
different products, including ICTs. It targets how these products are 
designed and produced, used, reused and discarded. As part of the CEAP, 
European Commission (2023) recently adopted a new proposal aiming 
to promote the repair of electronic products. The proposal seeks to
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encourage more sustainable business models among manufacturers by 
instituting more extensive obligations. Various similar laws have been 
enacted in US states such as Minnesota, Massachusetts and New York. 

Another related trend is refurbishing of ICT products, which refers to 
the practice of restoring pre-owned ICT devices to a like-new condition, 
often including repairs, upgrades and quality assurance checks. In recent 
years, companies have emerged in the EU and in the US that collect 
smartphones, laptops, servers and other ICT products that they refurbish 
and resell to both companies and private consumers. According to the 
French Environment and Energy Management Agency (ADEME, 2022), 
choosing a refurbished smartphone reduces, on average, waste by 89%, 
while also reducing water usage and CO2 emissions significantly. The 
demand for refurbished ICT increased during the COVID-19 pandemic 
as people transitioned to remote work and study, and had to acquire new 
laptops, headsets and webcams. Simultaneously, production challenges in 
China resulted in a decreased supply of newly produced ICTs, leading 
people to search for alternatives. Even before the pandemic, there was 
a shortage of certain components, particularly GPUs, attributed to the 
growing interest in Bitcoin mining (Lim & Wibowo, 2022). Given the 
continued volatility in the market due to various geopolitical concerns, it 
is safe to assume that the market for refurbished devices will continue to 
rise in the foreseeable future. In a recent report, CMI (2022) assessed the 
refurbished device market at about USD 52.34 billion in 2021 and antic-
ipates it to rise to USD 64.10 billion in 2022, with a projected increase 
to roughly USD 146.43 billion by 2030. 

2.5 Conclusion 

Despite the environmental movement gaining momentum as early as the 
1960s, the ICT industry largely avoided the level of criticism directed at 
other polluting sectors, at least until the mid-2000s (Lennerfors et al., 
2015), when the concept of Green IT was first introduced and the field 
of IS started to emphasise these issues. Yet the topic of energy efficiency in 
ICT was a subject of discourse as far back as the 1970s during the oil crises 
(Fors & Lennerfors, 2018). The e-waste problem also started to gain 
increased attention in the 1970s, focussed on the hazardous substances 
that posed threats to human health and wildlife. Discussion of the human 
environment around ICTs in the 1970s and 1980s in the IS literature laid 
the groundwork to expand into consideration of the environment. Thus,
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in the historical narrative in this chapter we have presented how initia-
tives promoted by Green IT to improve the environmental sustainability 
of ICT had already been implemented and discussed to some extent 
within policy, research and practice albeit, usually, for economic, political 
or regulatory reasons or to promote social sustainability. Improved envi-
ronmental sustainability played a relatively small part in the endeavours 
employed to make ICT green, until the mid-2000s, when environmental 
concerns began to be used to promote change. Even then, relatively few 
genuinely new solutions were developed or invented; instead, existing 
ideas were often repurposed, repackaged or recontextualised as Green IT 
(Fors, 2019). 

For a relatively short period of time, Green IT focussed almost exclu-
sively on mitigating the negative effects of ICT production, use and 
disposal (Murugesan, 2008). However, the concept acted as a bandwagon 
towards new understandings of and discourses about the intersection 
of ICT and environmental sustainability (Fors, 2019). This led to an 
eventual shift in discourse where ICT was described as having relatively 
minor negative impacts on the environment during production, use and 
disposal, but could contribute substantially to furthering environmental 
sustainability during its use phase (GeSI, 2015). This more favourable 
perspective on ICT and sustainability prevailed until new discussions 
about emerging technologies such as AI, blockchain, video streaming 
and cloud computing once again put the focus on the negative environ-
mental impact of ICT due to its electricity use. Recent policy initiatives 
that prioritise the promotion of the circular economy emphasise extending 
the lifespan of ICT devices and encouraging repairability, with a specific 
emphasis on e-waste reduction (European Commission, 2023). We inter-
pret that the pendulum is once more swinging towards a more active 
consideration of the negative impact ICT has on the environment. 

To conclude, we argue that the potential for ICT to contribute to 
environmental sustainability remains mainly theoretical. Truly Sustainable 
ICT, with the power to greatly reduce the negative environmental impact 
of other polluting sectors of society, has, as of yet, not been deployed 
on a large scale, and it is difficult to say whether this potential will be 
unleashed (Börjesson Rivera, 2015). The long-term effects of certain 
technologies are difficult to foresee (Hallonsten, 2023), not least since 
their true impacts (or lack thereof) will reveal themselves only in decades 
to come, oftentimes in unexpected ways and contexts (Mazzucato, 2021). 
Therefore, we cannot be sure whether these emerging technologies will
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prove beneficial for environmental sustainability purposes or not. What we 
do know is that they currently pose a direct threat to the environment, 
today. We must therefore ensure that their direct negative effects along 
their respective value chains are mitigated, now. 
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Abstract “Twin Transformation” is characterised by synergistic lever-
aging of efforts towards digital and sustainability transformation. It relies 
on digital transformation to develop digital solutions that can improve 
sustainability and on sustainability transformation to provide the goals and 
insights that are required to design these digital solutions. This integrated 
approach uses data streams and the predictive and generative capabilities 
of systems enabled by Artificial Intelligence (AI). These systems help to 
overcome the boundaries of human rationality in addressing the complex
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problem space that exists at the intersection of digital and sustainability 
transformation. This chapter provides a framework for AI-enabled Twin 
Transformation and calls for a joint discourse to master what are arguably 
the two key transformations of this and the following decades. 

Keywords Digital transformation · Sustainability transformation · Twin 
transformation · Artificial intelligence · AI-enabled systems 

3.1 Introduction 

Digital transformation (DT) and sustainability transformation (ST) are 
dominant transformational forces. In the past few years, DT has been 
driven by rapid advancements in digital technologies and has had 
profound impacts on individuals, organisations, and society (e.g., Vial, 
2019; Wessel et al., 2021). Emerging digital technologies, such as digital 
platforms and Artificial Intelligence (AI), are advancing the ability to 
collect and process ever-larger volumes of data, make predictions based 
on that data, and generate solutions. Current DT research mainly focuses 
on such technological progress changing value creation paths and related 
positive and negative impacts on different levels of analysis (Hanelt et al., 
2021; Vial, 2019). At the same time, concerns about environmental
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degradation, social inequality, as well as economic instability shape market 
dynamics and have accelerated discussions about digital sustainability and 
digital resilience (Boh et al., 2023; Kotlarsky et al., 2023). ST depends 
on the vital role of digital technologies such as AI-enabled systems in 
addressing environmental and societal challenges to facilitate the devel-
opment of innovative solutions and systemic changes (Lehnhoff et al., 
2021; Watson et al.,  2010). AI-enabled monitoring and analysis of data 
like CO2 levels and forecast data of extreme weather events play major 
roles in environmental concerns of ST. 

Given the need to pursue both key transformations simultaneously, 
some businesses and regulators (e.g., European Commission, 2022) have 
identified a synergistic relationship between DT and ST. Businesses that 
use an integrated approach to deal with both transformations at once 
appear to be more successful than those that focus on one at a time 
(Ollagnier et al., 2021). The European Commission (2022) identifies 
several applications for an integrated DT and ST approach, including 
systematic management of supply chains and financial flows, developing 
monitoring frameworks that measure well-being beyond economic goals, 
and advancing secure data-sharing frameworks. 

Despite these potential synergies, the academic discourse on DT and 
ST has evolved in relative isolation. Only recently information systems 
(IS) research started to discuss the potential of an integrated trans-
formation of DT and ST, using the label Twin Transformation (e.g., 
Christmann et al., 2024; Graf-Drasch et al., 2023). Christmann et al., 
(2024, p. 7) characterise Twin Transformation as “a value-adding inter-
play between digital and sustainability transformation efforts that improve 
an organisation by leveraging digital technologies for enabling sustain-
ability and leveraging sustainability for guiding digital progress.” Thus, 
Twin Transformation leverages DT to develop digital solutions that 
improve ST to provide the goals and insights that are required to design 
those digital solutions. 

In this chapter, we argue that IS researchers and practitioners can play 
a role in further integrating DT and ST to capitalise on their synergistic 
potential, acknowledging that IS are embedded in larger systems where 
human action affects and is affected by the natural environment (Christ-
mann et al., 2024). Specifically, we highlight how AI—the ever-evolving 
frontier of computational advancement (Berente et al., 2021)—will play 
a pivotal role in realising Twin Transformation. We develop a framework 
for AI-enabled Twin Transformation to show how AI-enabled systems
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can help to overcome the boundaries of human rationality in addressing 
the complex problem space that exists at the intersection of DT and ST. 

The remainder of this chapter is structured as follows. Section 3.2 
outlines the Twin Transformation concept and highlights how the 
problem spaces of DT and ST overlap. Section 3.3 describes the role 
of AI-enabled systems in contributing to DT’s and ST’s joint solution 
space. Finally, Sect. 3.4 concludes the chapter with a discussion of our 
framework’s implications for IS research and practice. 

3.2 Twin Transformation: Converging 

the Problem Spaces of Digital Transformation 

and Sustainability Transformation 

Twin Transformation integrates DT’s and ST’s problem spaces providing 
a joint solution space at their interface. These problem spaces comprise 
the respective challenges of the individual transformations, while they are 
addressed in an integrated manner in the Twin Transformation solution 
space. Such integration may appear contradictory at first, as DT initiatives 
typically focus on economic concerns (e.g., efficiency improvement, sales 
increase) (Vial, 2019), whereas ST initiatives are motivated by social and 
environmental concerns (Schoormann, 2020; Seidel et al.,  2013). 

The DT problem space refers to digital innovations that transform 
aspects of private and professional lives, organisations’ value propositions 
(Wessel et al., 2021), and society’s interconnectedness (Mousavi Baygi 
et al., 2021). At the individual level, digital technologies redefine commu-
nication, collaboration, workplace design, and work practices (sometimes 
referred to as the future of work). At the organisation level, DT affects 
processes, products, services, and business models (Vial, 2019). At the 
societal level, an interconnected techno-society unfolds in which digital 
technologies create and shape reality instead of only representing it 
(Baskerville et al., 2019). At all levels, DT involves continuous change 
and causes significant tensions between the ‘old’ and the ‘new’ (Drech-
sler et al., 2020), requiring flexibility and acceptance of a new culture 
(Svahn et al., 2017). As a result, the success of DT is often only partial— 
but the partial success is also because its complex drivers and effects are 
still poorly understood (Gurbaxani & Dunkle, 2019).
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The ST problem space refers to social, environmental, and economic 
sustainability issues related to individuals, organisations, and society. Indi-
viduals can have a positive impact on sustainability by making sustainable 
consumption choices, while organisations can contribute by empow-
ering individuals to make sustainable consumption choices and to use 
their power to improve global sustainability. The effect of organisational 
behaviour should not be underestimated, as, for example, the energy 
sector in the European Union (EU) is responsible for two thirds of 
the greenhouse gas (GHG) emissions of the EU (European Parliament, 
2023). At the societal level, legislators use regulations to steer individu-
als’ and organisations’ behaviour and support intergenerational justice by 
mitigating biodiversity losses and natural disasters to ensure that future 
generations can continue to live in a world worth living in (Ekardt et al., 
2023). Overall, ST uses the underlying mechanisms and links among the 
three levels of sustainability to shape and guide its means and ends. 

Building on insights from IS research on DT and ST problem spaces, 
recent publications focus on the intersection where solutions address 
DT- and ST-related problems simultaneously. Zimmer and Järveläinen 
(2022), for instance, apply the triple-bottom line of economic, environ-
mental, and social sustainability to DT research and provide a framework 
for sustainable and digital co-transformations. Graf-Drasch et al. (2023) 
analyse Twin Transformation on various organisational levels using an 
integrative work system perspective to describe the interplay of DT and 
ST and guide organisations in their Twin Transformation. Christmann 
et al. (2024) examine dynamic capabilities of making DT sustainable and 
enabling the digitalisation of ST processes to realise Twin Transformation. 
In this context, particularly because of their learning abilities, AI-enabled 
systems are recognised as the current technological frontier for developing 
dynamic capabilities in transformational DT and ST, and the specific role 
of AI in Twin Transformations warrants our attention. 

3.3 A Framework for AI-enabled 

Twin Transformation 

Twin Transformation is rooted in two complex and overlapping problem 
spaces, each rife with multidimensional problems that are too complex 
and too large for humans to navigate. DT and digital technologies like 
AI-enabled systems open many opportunities to address the multi-layered 
challenges of sustainability, which are often characterised by uncertain
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interdependencies and nonlinearities (Malhotra et al., 2013; Schoormann, 
2020; Watson et al.,  2010;). The complexity that results from DT’s 
almost infinite opportunities and ST’s multidimensional dependencies 
make it difficult for humans to evaluate the value of a (digital) solu-
tion design (Rai, 2017), so Twin Transformation is a prime example of 
problems that require application of AI-enabled solutions’ predictive and 
generative capabilities to overcome the boundaries of human rationality 
(Berente et al., 2021). Through their capacity to learn, make predictions, 
support decision-making, and generate new solutions, AI can help to 
build socio-technical systems that have the requisite variety (Ashby, 1991) 
needed to address complex economic, environmental, and social concerns 
simultaneously. 

The interplay between DT and ST is enabled by networks of sensi-
tised objects, which generate the data streams that provide fodder for 
AI-enabled systems. AI-enabled systems can process large amounts of data 
that form the basis for their ability to learn (i.e. improve through data and 
experience) and to be autonomous (i.e. having the ability to act without 
human intervention) in an expanding range of contexts (Agrawal et al., 
2018; Berente et al., 2021). Moreover, AI-enabled systems can provide 
predictions and generate design options that can inform design decisions 
and lead to new data streams. They can find patterns in large amounts 
of unstructured data and generate novel artefacts (e.g., through genera-
tive AI), thus helping to clarify phenomena related to sustainability and 
informing appropriate design interventions (Padmanabhan et al., 2022). 
ST requires AI-enabled systems to learn about a transformation’s conse-
quences, such as the gains that are likely from implementing aspects of 
the Circular Economy (Zeiss et al., 2021). 

In the AI-enabled Twin Transformation solution space, AI-enabled 
systems facilitate identification of patterns and structuring of pertinent 
data (streams), thereby catalysing Twin Transformation efforts (Christ-
mann et al., 2024). AI-enabled solutions for Twin Transformation learn 
from incoming data streams from DT, while the ST aspect is reflected in 
providing goals and occasions for generating that data, thereby guiding 
the design of new solutions (Graf-Drasch et al., 2023). Figure 3.1 
captures the dual dynamics that underlie AI-enabled Twin Transforma-
tion, including the role of data streams and AI-enabled systems.

We conceive of the AI-enabled Twin Transformation solution space 
as being realised through AI-enabled solutions at the individual, organ-
isational, and societal levels. AI-enabled Twin Transformation solutions
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Digital 
Transformation 
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Sustainability 
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Problem Space 

AI-enabled Twin 
Transformation 
Solution Space 

Designing 

Fig. 3.1 Framework for AI-enabled Twin Transformation

are based on the capabilities of AI-enabled systems, while their design is 
guided by sustainability principles or purpose. Table 3.1 highlights exam-
ples of such AI-enabled solutions for Twin Transformation at these three 
levels of analysis. The examples show that DT and ST interact synergisti-
cally, which results in contributions to sustainability objectives as well as 
a positive impact on digitalisation.

Recognising that AI-enabled Twin Transformation is a boundary-
spanning, holistic transformation, questions for research, and practice 
arise at the three levels of analysis (Fig. 3.2). First, individual-level 
behaviour represents the basis for change on all other levels. Individual-
level Twin Transformation involves both leveraging data streams and 
AI to learn about individual behaviour’s impacts on sustainability, and 
designing digital applications to guide individuals towards sustainability-
oriented behaviour (Bashir, 2022) while ensuring technology acceptance 
(Venkatesh et al., 2016). Organisation-level research and practice should
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Table 3.1 Examples of AI-enabled solutions for twin transformation 

Level of analysis Example Description and exemplary impact 

Individual level Plant Jammer1 Plant Jammer helps individuals to reduce food 
waste in everyday life through providing users 
customised recipes based on the ingredients they 
have at home. By leveraging AI-enabled systems, 
Plant Jammer personalises recipes by understanding 
users’ eating habits and preferences 
Digitalisation impact 
Smarter and more versatile cooking with available 
ingredients 
Sustainability impact 
Decreasing individuals’ food waste 

Organisational 
level 

The Climate 
Choice2 

The Climate Choice Platform facilitates AI-driven 
screenings of suppliers to decrease an organisation’s 
negative impact on climate and encourage suppliers 
to improve their own climate-related performance 
Digitalisation impact 
Data-based assessment of suppliers’ 
(sustainability) performance 
Sustainability impact 
Identifying GHG emitters in the supply chain and 
reducing emissions 

Societal level Rainforest 
Connection 
Guardian 
Platform3 

The data- and AI-powered Guardian Platform helps 
to protect the rainforest from illegal logging and 
poaching by using solar-powered acoustic streaming 
devices to monitor and analyse the sounds of the 
rainforest for abnormalities 
Digitalisation impact 
Guiding rangers more effectively in the search for 
poachers 
Sustainability impact 
Safeguarding the rainforest and global biodiversity

use AI-enabled systems to explore pattern identification and the impact 
of organisational activities on sustainability to support the design of cost 
and resource-efficient digital processes, products, services, and business 
models (El Hilali et al., 2020). Societal-level Twin Transformation inte-
grates DT’s impact on sustainability and ST’s impact on digitalisation

1 https://www.plantjammer.com/empty-your-fridge/inspiration. 
2 https://theclimatechoice.com. 
3 https://rfcx.org/guardian. 
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Individual 
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Change 
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How can we learn through AI about individual behaviour impacts on 
sustainability? 
How should AI-enabled digital applications that guide sustainable 
behaviour be designed? 

How can we learn through AI about organisations’ digitalisation and 
digital innovation impacts on sustainability? 
How should AI-enabled digital business models and innovations 
targeting sustainability be designed? 

How can we learn through AI about digital regulations’ impacts on 
sustainability? 
How should AI regulations that reward integrated digital and 
sustainable initiatives be designed? 

Fig. 3.2 Key questions about AI-enabled twin transformation on three levels 
of analysis 

to influence regulations that measure and reward integrated DT and ST 
initiatives (European Commission, 2022). 

3.4 Implications for Information 

Systems Research and Practice 

To foster leadership and develop mitigation strategies related to the 
current challenges for DT and ST, such as how to motivate individuals to 
use new digital technologies or how to enable organisations to measure 
their impact on climate change, IS researchers and practitioners should 
focus on AI-enabled Twin Transformation. We identify three implications 
of such a focus that emerge from this view. 

First, Twin Transformation that builds on AI-enabled systems  and data  
streams requires capitalising on the learning and designing cycles simulta-
neously. Predictions facilitate better designs that can produce new streams 
of economic, environmental, and social data. Bringing together DT and 
ST perspectives can result in a virtuous cycle of learning and design activ-
ities. Not every IS study has to do both, but we suggest that they at 
least build on each other cumulatively. Twin Transformation is complex, 
and complexity can be dealt with through decomposition (Baldwin & 
Clark, 2000; Simon, 1996). For instance, learning that a particular digital 
component achieves a particular goal in a particular system (e.g., sensors
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that monitor the operation of production processes) can provide the foun-
dation for further, more complex designs that produce more complex data 
streams (e.g., for assessing and certifying the GHG emissions generated 
in the supply chain). Managing AI-enabled systems in Twin Transforma-
tion requires managing the learning and designing cycles that alternate or 
blend. 

Second, Twin Transformation research integrates DT and ST problem 
spaces, thus opening a new solution space at their intersection, where 
AI-enabled systems catalyse Twin Transformation solutions that learn 
from DT to foster sustainability and exploit ST’s guidance for DT design 
(Christmann et al., 2024; Graf-Drasch et al., 2023). However, using AI-
enabled systems can be resource-intensive (e.g., energy consumption) and 
subject to social biases (e.g., gender bias), thus negatively affecting envi-
ronmental and social sustainability. Hence, practitioners and researchers 
must account for address, and improve the sustainability of AI-enabled 
systems across their entire lifecycle to exploit all of Twin Transformation’s 
potential (van Wynsberghe, 2021). 

Third, our research offers an outlook on the future of AI-enabled 
systems and Twin Transformation’s interplay in practice. Individuals, 
organisations, and society deal with the infinite possibilities of AI-enabled 
solutions. Our framework supports individuals, organisations, and society 
in connecting AI-enabled solutions and the objectives of Twin Transfor-
mation to leverage digital and sustainable advantages. By highlighting 
the role of data streams and AI-enabled systems in Twin Transforma-
tion, our work presents practitioners with a fresh strategic perspective on 
integrating DT and ST problem spaces. 

In conclusion, we argue that Twin Transformation is the pivotal trans-
formation for this and the coming decades. Joint discourse grounded in 
research on AI-enabled systems, IS for environmental sustainability (i.e., 
Green IS, Green IT), and DT can help to clarify the relationship between 
the two transformations, namely digital and sustainability transformation, 
and explorations of the AI-enabled Twin Transformation solution space 
to unearth digital and sustainable results.
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CHAPTER 4  

Digital Transformation and AI in Energy 
Systems: Applications, Challenges, 

and the Path Forward 

Eric Olson 

Abstract The integration of digital technologies like Machine Learning 
(ML), Artificial Intelligence (AI), and the Internet of Things is trans-
forming energy systems. This digital transformation aims to enhance 
efficiency, sustainability, and resilience in power generation, transmission, 
and consumption. A key focus is developing smart grids that leverage real-
time data and intelligent algorithms to optimise operations. In response, 
deep learning and reinforcement learning techniques are being applied 
to bolster cybersecurity in the energy sector. Deep learning excels at 
detecting threats by identifying patterns in large datasets. Meanwhile, 
reinforcement learning can simulate attack scenarios to train adaptive 
defence strategies. However, cybersecurity threats pose a major risk 
as energy infrastructure becomes more interconnected. The Colonial 
Pipeline ransomware attack in 2021 demonstrated the vulnerabilities of
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critical infrastructure to cyberattacks. Despite great potential, challenges 
remain regarding model transparency, ethics, and data availability. Overall, 
realising the promise of AI in the energy sector requires navigating tech-
nical complexities and prioritising explainable, trustworthy systems. If 
implemented thoughtfully, these technologies can catalyse the transition 
to smarter, more efficient, resilient, and sustainable energy systems. 

Keywords Digitisation · Smart grid · Machine learning · Artificial 
intelligence · Cybersecurity 

4.1 Introduction 

In the coming years, digitalisation is set to revolutionise energy infras-
tructure (Kang et al., 2023). Broadly, digitalisation denotes the increasing 
integration of information and communication technologies (ICTs) across 
various sectors of the economy. This transformation is driven by advance-
ments in data processing and analytics, Machine Learning (ML), and 
Artificial Intelligence (AI). Central to this transformation is the conflu-
ence of data, AI/ML, and the Internet of Things (IoT). The affordability 
of sensors, coupled with expanded data storage capabilities, has spurred 
rapid advancements in analytical techniques to better forecast energy 
demand as well as predict outages (Potdar et al., 2018). The smart 
grid represents a transformation in power system operations, driven by 
integration of renewable energy, deployment of advanced sensors and 
communication systems, active consumer participation, and increased 
digitalisation (Dileep, 2020). However, conventional optimisation and 
control techniques struggle to manage the complexity, dynamics, and 
uncertainty inherent in modern smart grid operations. In fact, traditional 
model-based methods rely on accurate system models and knowledge 
of parameters, which are challenging in complex, stochastic environ-
ments (Glavic, 2019). This has motivated growing interest in AI and ML 
techniques for smart grid applications. 

Historically, the energy sector has been a pioneer in adopting techno-
logical innovations. For instance, during the 1970s, power utilities were 
early adopters of technologies that bolstered grid management (Gross 
et al., 2018). Similarly, oil and gas companies have consistently inte-
grated innovative digital tools to simulate exploration assets and curtail
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maintenance costs. The energy sector’s adaptability and forward-thinking 
approach have positioned it to harness the full potential of digital advance-
ments. A significant portion of the potential for digitalisation in the 
energy sector stems from its capacity to synchronise energy demand and 
supply more effectively (Baidya, 2021). The real-time data relay capa-
bilities of the IoT can substantially minimise energy wastage, thereby 
curtailing carbon emissions and helping to mitigate climate change. 

This chapter examines applications of deep learning (DL) and rein-
forcement learning (RL) across major smart grid operations (domains 
including optimal dispatch, electricity markets, and emerging areas like 
cybersecurity and privacy). For each area, key papers are analysed to 
provide an overview of implementations, results and limitations. Chal-
lenges and future directions are also discussed. The review illustrates that 
while DL shows immense potential, further research is needed to address 
issues like cybersecurity, scalability, and stability before large-scale deploy-
ment. Overall, DL models represent an important innovation for realising 
the vision of efficient, reliable, and resilient smart grid operations. The 
remainder of this chapter is structured as follows: Sect. 4.2 provides a 
brief description of the smart grid and DL and RL; Sect. 4.3 provides a 
description of DL applied to the batteries and the smart vehicle grid; 
Sect. 4.4 examines DL and RL in the context of cybersecurity while 
Sect. 4.5 provides some concluding remarks. 

4.2 The Smart Grid and Deep Learning 

The smart grid represents a significant advancement in contemporary 
energy management. The integration of affordable sensors and moni-
toring devices has significantly improved the grid’s ability to monitor and 
adjust processes. This gives operators the tools to analyse and leverage 
data from sensors throughout the grid. As such, the smart grid is able 
to minimise losses during energy transmission and distribution, thereby 
improving resource utilisation and overall system efficiency (Wang et al., 
2023). The smart grid also improves grid reliability. In real-time, it 
can respond to disruptions and outages. This is particularly important 
due to the increased use of renewable energy sources such as solar 
and wind (Wang  et  al.,  2023). It effectively manages the intermittent 
nature of these resources, balancing supply and demand, storing surplus 
energy, and ensuring grid stability. This is instrumental in achieving 
a cleaner and more sustainable energy future. However, conventional
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modelling, optimisation, and control techniques encounter substantial 
challenges in managing the massive amount of data that comes from 
the smart grid. As such, AI and ML have emerged as crucial compo-
nents in advancing the smart grid (Massaoudi et al., 2021). AI in the 
energy space primarily refers to the creation of algorithms capable of 
performing tasks that traditionally demanded human intelligence, such 
as real-time monitoring, fault detection, and load forecasting (Cheng & 
Tao, 2019). ML, a subset of AI, empowers machines to learn from data 
and adapt without explicit programming, making it particularly valuable 
for the smart grid. By processing vast amounts of data from various 
sensors and sources, these models can optimise the grid’s operation, 
reducing transmission losses and improving resource allocation. Addi-
tionally, they facilitate real-time monitoring, enabling rapid detection 
and response to grid disruptions, ultimately minimising downtime, and 
ensuring uninterrupted power supply. 

Two particularly important types of ML have emerged as useful for 
the smart grid: DL and RL (Zhang et al., 2018). Both fall under the 
broader category of ML and came from the development of multi-layer 
neural networks. While DL can encompass a broader range of applica-
tions, the term is commonly associated with neural networks with a large 
number of layers. In RL, the core elements consist of an individual, an 
overall environment, rewards or pay-outs, and actions. The goal within 
RL is to optimise the accumulated rewards through a sequence of actions 
depending upon how the environment changes. Both types of learning 
have been studied in the academic literature for a while but have only 
recently been applied to energy sector. Deep Reinforcement Learning 
(DRL) combines DL and RL, leveraging neural networks for perception 
and RL for sequential decision-making (Arulkumaran et al., 2017). This 
enables DRL agents to learn control policies directly from data through 
interactions with the smart grid, without requiring an explicit system 
model (Cao et al., 2020). 

Models, such as Recurrent Neural Networks (RNNs) and Long Short-
Term Memory (LSTM) networks, excel at forecasting tasks due to their 
ability to process sequential data and learn from it. In integrated energy 
systems, accurate demand forecasting is crucial. The fluctuating nature of 
renewable energy sources like solar and wind presents a significant chal-
lenge to their integration into the energy mix. DL can mitigate this issue 
by analysing consumption trends and predicting generation patterns by 
combining different data sources (e.g., weather forecasts and commodity
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prices), thus enabling grid operators to balance intermittent renewable 
resources with natural gas, coal, and other hydrocarbons (Wang et al., 
2019). This balance is critical for maintaining grid stability and ensuring 
a constant energy supply. Additionally, DL can optimise energy storage 
systems, deciding when to store excess energy and when to release it 
back into the grid, based on predictive models that take into account 
future energy generation and consumption. Yang et al. (2021) used an  
improved Deep Deterministic Policy Gradient (DDPG) framework for 
lowering operation costs. Zhou et al. (2020) introduced DRL strategy 
for the economic dispatch of combined heat and power. The improved 
DRL algorithm (i.e., distributed proximal policy optimisation or DPPO) 
demonstrated better performance in handling a variety of operating situ-
ations compared to conventional methods, all while providing real-time 
optimal control strategies. 

DRL also offers opportunities for enhancing demand-side manage-
ment by providing systems that can learn and adapt to dynamic energy 
consumption patterns (Lissa et al., 2021). In demand-side management, 
DRL agents are trained to optimise energy usage within a grid or a 
local system by considering real-time variables such as current demand, 
pricing, and the availability of renewable energy sources. The technology 
can manage the operation of interconnected devices and systems, from 
residential HVAC (heating, ventilation, and air conditioning) units to 
industrial machinery, adjusting their operation to align with changes in 
the price as well as changes in the source of the energy being used. This 
capability ensures that energy consumption is not only more econom-
ical but also more responsive to the intermittent nature of renewable 
energy sources. As such, emissions may fall if individuals or manufac-
turers can adjust production depending on the type of electricity used. For 
example, Zhong et al. (2021) applied DRL to dynamically optimise incen-
tives for electric heating integration and found cost savings for users and 
companies, increased wind power consumption, and a more intelligent 
system for regenerative electric heating by considering user behaviour and 
differences. 

Maintaining the equilibrium of electricity supply and demand is a 
pivotal role of automatic generation control (AGC), which modulates 
the power output from various generators. The synergy of ML and AI 
with such devices equips AGC systems with the foresight and agility to 
more effectively fine-tune the interplay between generation and demand, 
thereby bolstering the grid’s flexibility and operational efficiency. DRL has
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been leveraged for AGC to enhance the tracking of unpredictable renew-
able energy sources and to augment system adaptability (Vijayshankar 
et al., 2021). Li et al. (2020) employed hierarchical multi-agent DRL 
to showcase its capability to adjust to fluctuating scenarios and to 
perform economic optimisations. Despite these advancements, challenges 
like system instability, hyperparameter sensitivity, and the complexity of 
sample handling persist. 

4.3 Deep Learning, Batteries, 

and Stabilising the Smart Grid 

Batteries will play an integral role in smart grid stability and emissions 
reductions. Batteries are not merely storage devices; they are the corner-
stone of a sustainable, efficient, and reliable power system (Chang et al., 
2018). Their role in facilitating the transition to a low-carbon future 
is becoming increasingly apparent, marking them as indispensable tools 
in achieving global environmental goals. The future of energy is inex-
tricably linked to the advancement of battery technology, heralding a 
new era of greener power and more sustainable living. Over the past 
decade, the cost of lithium-ion batteries dramatically fell which signif-
icantly changed the economics of energy storage and electric vehicles 
(EVs). Since 1991, the price of lithium-ion batteries has dropped by 
approximately 97% (Ziegler & Trancik, 2021). This steep decrease is 
largely attributed to improved manufacturing processes, larger production 
facilities, and advancements in the chemistry and design of the batteries 
themselves, which have increased energy density and prolonged lifespan 
(Ziegler & Trancik, 2021). Their ability to store surplus energy from 
renewable sources like wind and solar is invaluable in mitigating the 
inherent intermittency of renewables. Moreover, DL and RL learning 
ensures a more consistent and reliable power supply, crucial for main-
taining grid stability. By storing energy during periods of low demand and 
releasing it during peak consumption times, batteries effectively manage 
load balancing (Muralitharan et al., 2016). This process, known as peak 
shaving, reduces the burden on the grid and lessens the dependency 
on carbon-intensive, peaking power plants, which are typically activated 
during high demand periods. Moreover, the integration of batteries into 
smart grids leads to more efficient grid operations. Modern smart grids, 
equipped with advanced battery storage systems, optimise the use of
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renewable resources and minimise dependence on outdated, less effi-
cient power generation facilities. Beyond grid stabilisation, batteries are 
instrumental in the broader context of emission reduction. They opti-
mise power plant operations by reducing the need for plants to run in 
less efficient, more emissive standby modes. Batteries enable power plants 
to operate more steadily and efficiently, thus diminishing greenhouse gas 
(GHG) emissions (Jafari et al., 2022). Batteries also support the growth 
of Distributed Energy Resources (DERs), such as residential solar panels. 
By storing energy generated locally, these batteries reduce transmission 
losses and reliance on centralised power generation, which is often more 
carbon-intensive. This localised energy production and storage model 
enhances the efficiency of the power system and contributes to emission 
reduction. 

In the transportation sector, batteries are key to the electrification 
of vehicles, which is a major avenue for cutting down emissions. EVs 
not only contribute to cleaner air but may also serve as dynamic energy 
storage units that can supply power back to the grid when needed. This 
Vehicle-to-Grid (V2G) capability allows EVs to act as mobile energy reser-
voirs, further stabilising the grid and promoting the use of renewable 
energy (Theissler et al., 2021). DL algorithms are also transformative for 
the energy sector in the realm of EVs, especially for battery management 
and monitoring. By processing historical battery performance data, DL 
models can detect signs of battery degradation, thus enabling pre-emptive 
maintenance actions to be scheduled (Theissler et al., 2021). This pre-
emptive model helps in devising intelligent battery management systems; 
these then dynamically change charging protocols to safeguard battery 
health while concurrently meeting the energy demands of EV owners. 
DL contributes to the enhancement of state-of-charge and state-of-health 
estimation models (Tian et al., 2021). These models are great at fore-
casting the dependable range of EVs and are instrumental in extending 
the overall lifespan of the battery. The accuracy of these predictive models 
is critical, as they directly influence the trust that users place in the EV’s 
operational reliability. Moreover, DL models can integrate environmental 
variables, such as temperature fluctuations, to refine the battery manage-
ment process. In fact, temperature is a salient factor that significantly 
impacts battery performance, efficiency, and safety. Extreme cold can 
hinder battery chemical reactions, leading to reduced range and slower 
charging rates, while excessive heat can accelerate battery degradation and 
pose safety risks (Jaguemont et al., 2016). Thus, DL models can anticipate
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and adjust to temperature-related battery performance variations, thereby 
optimising charging strategies and operational guidance according to 
real-time and forecasted weather conditions (Koohfar et al., 2023). RL 
presents opportunities to incentivise owners to properly maintain their 
vehicles. RL agents can be trained to maximise long-term rewards like 
improved safety and reliability. Owners can receive cost savings or other 
benefits for proactively maintaining their vehicle based on diagnostic 
alerts. This positive feedback loop ensures owners prioritise maintenance, 
vehicles operate optimally, and costs are reduced for manufacturers who 
avoid warranty claims. RL models may also get smarter by incorporating 
maintenance data, refining alert triggers and personalised incentives to 
shape driver behaviour. 

City planners can estimate how increased EV adoption will strain 
the electrical grid under different charging behaviours (Deb, 2021). 
Utilities can identify locations likely to require grid upgrades to meet 
new EV load. With computational scenario modelling, DL provides the 
necessary intelligence to scale infrastructure appropriately. It also aids 
macro-level energy management and renewable integration by revealing 
charging patterns. Intelligently expanding charging infrastructure relies 
heavily on DL (Tuchnitz et al., 2021). High-dimensional spatial datasets 
describing vehicle populations, existing stations, power grid capacity, and 
land use can be utilised to determine ideal new charging locations. DL 
algorithms can pinpoint placement that maximises accessibility and utili-
sation based on current EV owner charging habits derived from surveys 
and public data. Compatible sites can be proposed at parking garages, 
retail centres, and other high-traffic locations where drivers tend to stop 
for 20 minutes or longer. DL may ultimately provide a way to imple-
ment a data-driven approach for strategic infrastructure growth, ensuring 
charger availability keeps pace with EV adoption. DL also presents ample 
opportunities to enhance electric vehicle (EV) infrastructure through 
data-driven modelling and optimisation (Deb, 2021). A key application 
is creating accurate models of EV energy consumption based on driving 
conditions. Again, by analysing historical data, DL algorithms can learn 
to predict future energy needs during a planned trip based on inputs 
like road type and condition, traffic patterns, driving style, and weather. 
Models can be personalised by learning from an individual driver’s past 
trips to account for variations in acceleration, braking, and speed. With 
granular energy consumption forecasts, DL provides a major improve-
ment over simplistic range estimation that relies on battery size alone
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allowing EV drivers to better (and more accurately) plan routes and 
charging stops. 

Finally, DL enables robust V2G systems whereby EVs bi-directionally 
transmit power between their batteries and the grid (Vadi et al., 2019). 
DL optimises the timing and volume of energy flow in either direction. 
By analysing usage patterns, a DL model can predict upcoming charging 
demand during peak times. EVs can then be incentivised to delay charging 
by a few hours to ease grid strain, or discharge energy back to the grid 
if requested. Meanwhile, during periods of excess renewable generation, 
EVs can absorb surplus clean energy to charge batteries. This avoids 
curtailing sustainable power and uses EVs as dynamic storage assets. DL 
can combine historical data with real-time grid and vehicle signals to 
orchestrate V2G energy transfer. This balancing act reduces grid volatility 
introduced by variable renewable sources, benefiting all ratepayers. It 
also compensates EV owners for energy services that support the overall 
system. An RL agent can monitor factors like electricity prices, renew-
able energy availability, and individual user patterns to determine optimal 
charging. By receiving feedback on outcomes like minimising costs and 
maximising battery lifespan, the system learns when and how much to 
charge each vehicle. This personalised charging ensures efficient energy 
use while satisfying individual mobility needs. Additionally, RL enables 
intelligent demand response systems, where EVs interact with the grid to 
balance supply and demand. The RL agent learns strategies for charging 
or discharging vehicles in response to real-time grid conditions. For 
instance, EVs can soak up excess renewable energy during sunny middays 
when solar production peaks. Later in the evening when electricity 
demand spikes, those same vehicles can discharge power back to relieve 
grid strain. By optimising bi-directional energy flow, RL helps stabilise 
an electrical grid incorporating more variable wind and solar generation 
while compensating EV owners. At a broader level, RL can optimise 
traffic signals in real-time to improve EV efficiency and reduce emissions. 
An RL agent controlling traffic lights learns adaptive signalling strategies 
based on traffic conditions. This dynamic approach reduces congestion 
and keeps vehicles moving at steadier speeds compared to fixed timing 
plans. Maintaining consistent speed enhances an EV’s energy efficiency, 
as frequent starts and stops drain more battery charge. Smoother traffic 
flow also diminishes brake wear and emissions. Additionally, optimising 
traffic flow allows existing charging infrastructure to support more EVs.
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Battery technologies, pivotal in enhancing grid stability and powering 
EVs, offer notable environmental benefits but also face certain challenges. 
On the upside, they enable the integration of intermittent renewable 
energy sources into the grid, facilitating a stable, continuous energy 
supply and thus reducing reliance on fossil fuels. This integration is 
instrumental in lowering GHG emissions, both in the energy sector 
and in transportation, as EVs replace traditional, emission-heavy vehicles. 
Batteries also promote energy efficiency by allowing for energy storage 
during low-demand periods and usage during peak times, which dimin-
ishes the need for carbon-intensive peaking power plants. However, these 
advantages come with challenges, including the environmental impact 
of battery production and disposal, which involves resource-intensive 
processes and potential issues with recycling and waste management. 
There is also the concern of sourcing raw materials, often linked to 
ecological and human rights issues. Moreover, the lifespan and energy 
density of batteries are areas requiring ongoing technological advance-
ments to ensure long-term sustainability and practicality. Therefore, while 
battery technologies are central to a more sustainable future in grid 
management and transportation, addressing these production, disposal, 
and material sourcing challenges is essential for maximising their environ-
mental benefits. 

4.4 Cybersecurity and the Smart Grid 

As we move towards smart grids, the critical issue of cybersecurity 
emerges prominently. Cybersecurity is crucial for ensuring the environ-
mental sustainability of our energy systems, as threats can significantly 
hinder the adoption and efficiency of smart grids. This indirectly impacts 
our ability to integrate renewable resources and reduce emissions. A 
notable example is the Russian cyberattack on Ukraine’s electricity grid, 
which illustrates the potential for widespread disruption in critical energy 
infrastructure.1 The integration of renewable resources and the prolif-
eration of IoT devices into the smart grid have significantly enhanced 
the efficiency and reliability of energy distribution and consumption, 
but they also introduce complex cybersecurity challenges (Kimani et al., 
2019; Gunduz et al., 2020). The threats range from data breaches

1 https://www.csis.org/analysis/responding-russian-attacks-ukraines-power-sector. 
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and privacy violations to coordinated attacks on energy infrastructure, 
potentially causing widespread disruptions. For example, the Colonial 
Pipeline hack, which occurred in May 2021, was a significant cyberattack 
that targeted one of the largest pipeline operators in the United States 
(Hobbs, 2021; Tsvetanov & Slaria, 2021). The pipeline carries gasoline, 
diesel, and jet fuel along a 5,500-mile route from the Gulf Coast to 
the New York metropolitan area. The perpetrators deployed ransomware 
that successfully infiltrated and encrypted the pipeline’s computer systems 
(Dudley & Golden, 2021). This did not just threaten data integrity; it 
held the company’s operational capability at ransom, demanding a signif-
icant payment in cryptocurrency to provide the decryption key necessary 
for recovery. Colonial Pipeline took decisive action to halt all pipeline 
operations, triggering a supply shock across the Eastern United States and 
leading to fuel shortages, panic buying, and heightened public anxiety 
about energy security. The US Government declared a state of emer-
gency to ensure the continuation of fuel deliveries. The incident inflicted 
significant economic damage and underscored the urgent necessity for 
more robust cybersecurity defences and strategies tailored to the unique 
challenges of the energy sector. 

DL and RL have become imperative for enhancing cybersecurity in this 
context. DL models are well-equipped to identify complex patterns that 
could signify cybersecurity threats (Dixit & Silakari, 2021). In fact, DL 
algorithms can process and analyse the data points generated by smart 
grids and identify potential attacks before they manage to breach the 
system. For example, Convolutional Neural Networks (CNNs) can be 
trained on network data to recognise the signatures of malware or intru-
sion attempts, while Recurrent Neural Networks (RNNs) can monitor 
system logs for suspicious activities over time (Wang et al., 2019). More-
over, DL models can be used for anomaly detection, learning the normal 
operational patterns of an energy system and then flagging deviations that 
may indicate a cyber threat. This capability is crucial for early detection, 
allowing for immediate containment and mitigation of potential breaches. 

RL is particularly suited to help cybersecurity where the threat land-
scape is dynamic, and the attackers continually evolve their strategies 
(Nguyen and Reddi 2021). By simulating cyberattack scenarios on the 
smart grid, RL algorithms are trained to recognise patterns of intru-
sion and react in real-time to neutralise threats. This simulation-based 
learning allows the algorithms to experience a wide range of attack 
vectors, ensuring a comprehensive defence strategy. In energy systems,
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where infrastructure resilience is critical, RL’s ability to adapt to rapid 
changes is invaluable. During an attack such as a Distributed Denial of 
Service (DDoS), RL can efficiently manage resources and re-route traffic 
to ensure minimal disruption. Over time, as the RL algorithm encoun-
ters more attacks, its strategy becomes more refined and robust, thereby 
enhancing the overall security of the system. 

The implementation of DL and RL in securing the smart grid comes 
with its set of challenges. One of the primary concerns is the demand 
for large volumes of high-quality training data, which can be difficult to 
procure, especially in scenarios simulating sophisticated cyberattacks. The 
computational intensity required for training and running these advanced 
models also poses logistical and financial challenges. Additionally, there 
is the risk of adversarial ML, where attackers may intentionally feed 
misleading data to corrupt the learning process. The opaque nature of 
these models, often referred to as ‘black boxes’, complicates the under-
standing of their decision-making processes. This lack of transparency 
can be a significant hurdle in sectors like cybersecurity, where trust 
and accountability are paramount. To address this, the development of 
explainable AI/ML tools is crucial. Ensuring that these systems adhere to 
ethical guidelines and regulations is essential to maintain public trust and 
to safeguard against the misuse of technology. While DL and RL offer 
transformative potential for cybersecurity in the energy sector, realising 
this potential requires navigating technical complexities, ethical consid-
erations, and the need for explainable and trustworthy AI systems. As 
these technologies continue to mature, their integration into the cyber-
security infrastructure will play a pivotal role in securing the future of 
energy systems against the ever-evolving landscape of cyber threats. 

4.5 Conclusion 

The digital transformation underway in the energy sector holds immense 
potential to enhance efficiency, sustainability, and resilience. Integral 
to this evolution is the integration of AI and ML, underpinned by 
proliferating data and advanced analytics. The convergence of these tech-
nologies unlocks new capabilities that were previously unattainable. A 
good example of this potential is the smart grid, which leverages real-
time data and intelligent algorithms to optimise generation, transmission, 
and distribution. Another pivotal application relates to EVs, where AI 
can improve battery management and charging patterns. But thin data
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in nascent areas like predictive maintenance necessitates careful training 
to avoid problems. As with smart grids, transparency and ethics are 
vital to steer AI towards the public good. The path forward must also 
address data availability and quality, as training robust models requires 
vast datasets. Public–private partnerships could help overcome propri-
etary barriers to data sharing and sharing computing power and energy 
demands also warrant consideration given AI’s intense computational 
needs. 

As outlined, DL and RL enable myriad grid enhancements spanning 
forecasting, control, and cybersecurity. However, substantial obstacles 
remain before large-scale adoption. Ensuring the safety and stability of 
AI-based systems is paramount, as failure could trigger cascading black-
outs. Rigorous testing and validation are critical. The opacity of complex 
neural networks also engenders concerns about accountability and ethics. 
Developing explainable AI models to elucidate the rationale behind 
autonomous decisions will be crucial for stakeholders’ trust. 

As underscored by the Colonial Pipeline attack, cyber threats represent 
the dark side of connectivity. AI-powered defence systems show promise, 
but underestimating how nefarious actors may use AI adversary invites 
failure. Adversarial ML could corrupt training data or exploit blind spots 
in models. Ultimately there are no silver bullets in cybersecurity. Overall, 
while AI enables step-changes in the energy sector, it is not a panacea. 
Technology is only one piece of the puzzle. Realising a sustainable energy 
future requires holistic thinking across policy, business models, culture, 
and infrastructure. AI should augment human capabilities, not supplant 
them. AI is a powerful tool, but not a replacement for human inge-
nuity, ethics, and leadership. Moving forward, striking the right balance 
between innovation and regulation will be crucial. Effective governance 
can steer AI towards the public good while giving it space to evolve 
responsibly. Beyond technology, truly sustainable energy demands inte-
grating social science, especially economics, and humanities perspectives 
into solution design. A shared vision for the future and willingness to 
adapt will determine if AI lifts the energy sector to new heights or leads 
it astray.



76 E. OLSON

References 

Abdullah, H. M., Gastli, A., & Ben-Brahim, L. (2021). Reinforcement learning 
based EV charging management systems–a review. IEEE Access, 9, 41506– 
41531. 

Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A. (2017). 
Deep reinforcement learning: A brief survey. IEEE Signal Processing Maga-
zine, 34(6), 26–38. 

Baidya, S., et al. (2021). Reviewing the opportunities, challenges, and future 
directions for the digitalization of energy. Energy Research and Social Science, 
81, 102243. 

Cao, D., Zhao, J., Hu, W., Ding, F., Huang, Q., & Chen, Z. (2021). Attention 
enabled multi-agent DRL for decentralized Volt-VAR control of active distri-
bution system using PV inverters and SVCs. IEEE Transactions on Sustainable 
Energy, 12(3), 1582–1592. 

Cesena, E. A. M., Loukarakis, E., Good, N., & Mancarella, P. (2020). Integrated 
electricity–heat–gas systems: Techno–economic modeling, optimization, and 
application to multienergy districts. Proceedings of the IEEE, 108(9), 1392– 
1410. 

Cheng, L., & Tao, Y. (2019). A new generation of AI: A review and perspective 
on machine learning technologies applied to smart energy and electric power 
systems. International Journal of Energy Research, 43(6), 1928–1973. 

Deb, S. (2021). Machine learning for solving charging infrastructure planning: 
A comprehensive review. In 2021 5th International Conference on Smart Grid 
and Smart Cities (ICSGSC) (pp. 16–22). IEEE. 

Dileep, G. J. R. E. (2020). A survey on smart grid technologies and applications. 
Renewable Energy, 146, 2589–2625. 

Dixit, P., & Silakari, S. (2021). Deep learning algorithms for cybersecurity appli-
cations: A technological and status review. Computer Science Review, 39, 
100317. 

Dudley, R., & Golden, D. (2021). The colonial pipeline ransomware hackers had 
a secret weapon: self-promoting cybersecurity firms. MIT Technology Review 
and ProPublica. 

Fujiyoshi, H., Hirakawa, T., & Yamashita, T. (2019). Deep learning-based image 
recognition for autonomous driving. IATSS Research, 43(4), 244–252. 

Grigorescu, S., Trasnea, B., Cocias, T., & Macesanu, G. (2020). A survey of 
deep learning techniques for autonomous driving. Journal of Field Robotics, 
37 (3), 362–386. 

Gross, R. et al. (2018). How long does innovation and commercialisation in the 
energy sectors take? Historical case studies of the timescale from invention 
to widespread commercialisation in energy supply and end use technology. 
Energy policy, 123: 682–699.



4 DIGITAL TRANSFORMATION AND AI IN ENERGY SYSTEMS … 77

Gunduz, M. Z., & Das, R. (2020). Cyber-security on smart grid: Threats and 
potential solutions. Computer Networks, 169, 107094. 

Hobbs, A. (2021). The colonial pipeline hack: Exposing vulnerabilities in us 
cybersecurity. SAGE Publications. 

Jafari, M., Botterud, A., & Sakti, A. (2022). Decarbonizing power systems: A 
critical review of the role of energy storage. Renewable and Sustainable Energy 
Reviews, 158, 112077. 

Jaguemont, J., Boulon, L., & Dubé, Y. (2016). A comprehensive review of 
lithium-ion batteries used in hybrid and electric vehicles at cold temperatures. 
Applied Energy, 164, 99–114. 

Kang, C., Kirschen, D., & Green, T. C. (2023). The evolution of smart grids. 
Proceedings of the IEEE, 111(7), 691–693. 

Kimani, K., Oduol, V., & Langat, K. (2019). Cyber security challenges for IoT-
based smart grid networks. International Journal of Critical Infrastructure 
Protection, 25, 36–49. 

Koohfar, S., Woldemariam, W., & Kumar, A. (2023). Prediction of elec-
tric vehicles charging demand: a transformer-based deep learning approach. 
Sustainability, 15(3), 2105. 

Lissa, P. et al. (2021). Deep reinforcement learning for home energy manage-
ment system control. Energy and AI , 3: 100043. 

Massaoudi, M., et al. (2021). Deep learning in smart grid technology: A review 
of recent advancements and future prospects. IEEE Access, 9, 54558–54578. 

Muralitharan, K., Sakthivel, R., & Shi, Y. (2016). Multiobjective optimization 
technique for demand side management with load balancing approach in 
smart grid. Neurocomputing, 177 , 110–119. 

Nguyen, T. T., & Reddi, V. J. (2021). Deep reinforcement learning for cyber 
security. IEEE Transactions on Neural Networks and Learning Systems. 

Potdar, V. et al. (2018). Big energy data management for smart grids— 
Issues, challenges and recent developments. Smart Cities: Development and 
Governance Frameworks, 177–205. 

Theissler, A., Pérez-Velázquez, J., Kettelgerdes, M., & Elger, G. (2021). Predic-
tive maintenance enabled by machine learning: Use cases and challenges in the 
automotive industry. Reliability Engineering and System Safety, 215, 107864. 

Tian, J., Xiong, R., Shen, W., & Lu, J. (2021). State-of-charge estimation of 
LiFePO4 batteries in electric vehicles: A deep-learning enabled approach. 
Applied Energy, 291, 116812. 

Tsvetanov, T., & Slaria, S. (2021). The effect of the Colonial Pipeline shutdown 
on gasoline prices. Economics Letters, 209, 110122. 

Tuchnitz, F., et al. (2021). Development and evaluation of a smart charging 
strategy for an electric vehicle fleet based on reinforcement learning. Applied 
Energy, 285, 116382.



78 E. OLSON

Vadi, S. et al. A review on communication standards and charging topologies of 
V2G and V2H operation strategies. Energies, 12 (19): 3748. 

Vijayshankar, S., Stanfel, P., King, J., Spyrou, E., & Johnson, K. (2021, May). 
Deep reinforcement learning for automatic generation control of wind farms. 
In 2021 American Control Conference (ACC) (pp. 1796–1802). IEEE. 

Wang, H. et al. (2019). A review of deep learning for renewable energy 
forecasting. Energy Conversion and Management, 198: 111799. 

Wang, D., Wang, X., Zhang, Y., & Jin, L. (2019). Detection of power grid distur-
bances and cyber-attacks based on machine learning. Journal of Information 
Security and Applications, 46, 42–52. 

Wang, Y., Wu, Y., Tang, Y., Li, Q., & He, H. (2023). Cooperative energy 
management and eco-driving of plug-in hybrid electric vehicle via multi-agent 
reinforcement learning. Applied Energy, 332, 120563. 

Yang, T., Zhao, L., Li, W., & Zomaya, A. Y. (2021). Dynamic energy dispatch 
strategy for integrated energy system based on improved deep reinforcement 
learning. Energy, 235, 121377. 

Zhang, C. et al. (2018). Energy storage system: Current studies on batteries 
and power condition system. Renewable and Sustainable Energy Reviews, 82: 
3091–3106. 

Zhang, D., Han, X., & Deng, C. (2018). Review on the research and practice 
of deep learning and reinforcement learning in smart grids. CSEE Journal of 
Power and Energy Systems, 4(3), 362–370. 

Zhong, S., Wang, X., Zhao, J., Li, W., Li, H., Wang, Y., Deng, S., & Zhu, J. 
(2021). Deep reinforcement learning framework for dynamic pricing demand 
response of regenerative electric heating. Applied Energy, 288, 116623. 

Zhou, S., Hu, Z., Gu, W., Jiang, M., Chen, M., Hong, Q., & Booth, C. (2020). 
Combined heat and power system intelligent economic dispatch: A deep rein-
forcement learning approach. International Journal of Electrical Power and 
Energy Systems, 120, 106016. 

Ziegler, M. S., & Trancik, J. E. (2021). Re-examining rates of lithium-ion battery 
technology improvement and cost decline. Energy and Environmental Science, 
14(4), 1635–1651.



4 DIGITAL TRANSFORMATION AND AI IN ENERGY SYSTEMS … 79

Open Access This chapter is licensed under the terms of the Creative Commons 
Attribution 4.0 International License (http://creativecommons.org/licenses/ 
by/4.0/), which permits use, sharing, adaptation, distribution and reproduction 
in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the 
chapter’s Creative Commons license, unless indicated otherwise in a credit line 
to the material. If material is not included in the chapter’s Creative Commons 
license and your intended use is not permitted by statutory regulation or exceeds 
the permitted use, you will need to obtain permission directly from the copyright 
holder.



CHAPTER 5  

From Concrete Jungles to Smart Cities 
and Digital Towns: Deploying Digital 

Technologies for Environmental 
Sustainability 

Theo Lynn, Pierangelo Rosati, and Jennifer Kennedy 

Abstract Urban areas account for most of the world’s energy consump-
tion and greenhouse gas emissions, and struggle to cope with the pressure 
of ever-growing urbanisation and an ageing infrastructure. This issue is 
likely to become even more prominent in the future due to current 
trends in population migration that see more people moving from rural to

T. Lynn (B) · J. Kennedy 
DCU Business School, Dublin City University, Dublin, Ireland 
e-mail: theo.lynn@dcu.ie 

J. Kennedy 
e-mail: jennifer.kennedy@dcu.ie 

P. Rosati 
Lero – Science Foundation Ireland Research Centre for Software, 
University of Galway, Galway, Ireland 
e-mail: pierangelo.rosati@universityofgalway.ie 

© The Author(s) 2024 
T. Lynn et al. (eds.), Digital Sustainability, Palgrave Studies in Digital 
Business & Enabling Technologies, 
https://doi.org/10.1007/978-3-031-61749-2_5 

81



82 T. LYNN ET AL.

urban agglomerates. Luckily, research shows that digital technologies have 
clear potential for mitigating some of the negative environmental effects 
of urbanisation while making the urban environment more liveable and 
enjoyable for citizens. This chapter discusses four key themes discussed in 
the literature on ‘smart cities’ directly related to the deployment of digital 
technologies in the urban environment to support greater environmental 
sustainability—smart transportation, building energy optimisation, smart 
waste management, and environmental monitoring. 

Keywords Smart cities · Digital towns · Smart transportation · Energy 
efficiency · Waste management. environmental sustainability · twin 
transition 

5.1 Introduction 

Forecasts suggest that up to seven out of ten of the world’s population 
will live in urban areas by 2050 (World Health Organization, 2021), a 
shift bringing both economic opportunities and substantial challenges 
for governments and municipal authorities. Urban centres are major 
consumers of energy, accounting for more than two-thirds of global 
consumption, and they are responsible for up to 70% of greenhouse gas 
emissions (GHG) (World Bank, 2023). This intensification of urbanisa-
tion not only exacerbates environmental issues but also poses significant 
health risks, including those related to road traffic injuries, pollution, 
and limited access to safe physical activities (World Health Organization, 
2021). Concurrently, many cities and indeed towns are grappling with 
the pressures of urbanisation on ageing infrastructures (KPMG, 2012). 

In response to these challenges, the concept of the ‘smart city’ has 
evolved and gained significant popularity over the past thirty years. A 
number of definitions of smart city have been proposed and, despite 
some differences, they share a common conceptualisation of leveraging 
information and communication technology (ICT) to enhance the func-
tionality of urban subsystems, thereby fulfilling the needs of inhabitants 
and communities (Albino et al., 2015; Batty et al., 2012). Despite the 
promise of smart city technologies, these projects often face governance, 
economic, and technological hurdles that have negatively affected their 
widespread adoption and implementation (Del Real et al., 2023; Rana
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et al., 2019). Additionally, the concept of ‘smart city’ creates a dispropor-
tionate focus on large-scale urban agglomerations (i.e., cities) and neglects 
the needs of smaller and more rural–urban areas and communities which 
may be affected by similar challenges but have less resources. In response, 
concepts relating to digital towns and smart streets have been developed 
to address the needs of both urban and rural areas (Hosseini et al., 2018; 
Lynn & Wood, 2023; Lynn et al.,  2022). 

In this chapter, we explore four key themes in research relating to 
digital sustainability in smart cities and towns, namely smart transporta-
tion systems, building energy optimisation, smart waste management, 
and environmental monitoring. Each of the following sections provides 
a high-level overview of these themes including the benefits of and chal-
lenges to adoption. Finally, Sect. 5.6 concludes the chapter with some 
final remarks. 

5.2 Smart Transportation 

Smart transportation, sometimes referred to as intelligent transportation 
systems (ITS), refers to the integration of advanced information and 
communication technologies (ICTs) into the transportation infrastructure 
and vehicles. In contrast, while often conflated with smart transportation 
and ITS, smart mobility as a concept encompasses all types of trans-
port users including cyclists and pedestrians (Chen et al., 2017). In 
this chapter, we focus on smart transportation systems as the targets of 
these systems (e.g., cars, etc.) are those who contribute most to adverse 
environmental impacts in cities and towns. 

Smart transportation systems aim to improve traffic and transit 
management, manage road use and behaviour, enhance safety, reduce 
energy and environmental impact, and increase the efficiency of trans-
portation networks (Lynn & Wood, 2023; McGregor et al., 2003). At an 
infrastructural level, smart transportation systems are enabled by advances 
in sensor technologies, mobile communication networks, the Internet 
of Things (IoT), smart transportation communication protocols, and 
novel computing architectures that expand from the cloud to the edge 
(Oladimeji et al., 2023). As such, smart transportation can leverage a wide 
range of technologies including but not limited to:
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• Smart traffic signalling, traffic demand management, and control 
systems to support and actuate decision-making (European Commis-
sion, 2020b);

• Automated street bollards, licence plate recognition, and embedded 
road lighting to prioritise users and manage transportation, change 
street use, and record infringements (Ghaemi, 2017; Lynn et al.,  
2020; Dabrowska-Zółtak et al., 2021);

• On-street parking sensors for identifying vacant spots, charging, 
recording usage, and signalling pricing (Christensen et al., 2021);

• Autonomous vehicles to support public transportation, freight, and 
micro-mobility (Iclodean et al., 2020; Sell et al.,  2021);

• Road anomaly and incident detection (Santosh et al., 2020; 
Amandio et al., 2021); and,

• Route optimisation, driver, and vehicle information systems 
(Rammohan, 2023). 

Chen et al. (2017) outline the potential ways in which the adop-
tion of smart transportation systems can contribute to energy efficiency. 
Firstly, the adoption of smart transportation systems can have a number 
of short-term benefits. These include energy savings related to changes in 
transport mode (e.g., to public transport), reductions in travel times (e.g., 
route optimisation and traffic management), and associated reductions 
in energy consumption per vehicle (Chen et al., 2017). Secondly, smart 
transportation systems may enable or catalyse other initiatives or inter-
ventions that may result in energy efficiencies and ultimately behavioural 
change (e.g., change in vehicular ownership, residential location, or 
activity pattern) (Chen et al., 2017). Jianwei et al. (2010) similarly note 
that ITS and other smart transportation systems may result in significant 
reduction in traffic-related costs and socio-economic benefits. Specifically, 
they note that such systems can result in reduced economic losses due to 
road construction costs, traffic congestion, environmental pollution, road 
injuries, and fatalities (Jianwei et al., 2010). 

Despite the opportunities presented by smart transportation systems, 
there are significant challenges. Waqar et al. (2023) identify six distinct 
categories of barriers to the adoption of smart transportation systems— 
technical, resource, interoperability, management, economic, and personal 
challenges. In their analysis, interoperability challenges received the 
highest mean score, followed by economic and technical challenges.
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Waqar et al. (2023) identify a wide range of barriers within these cate-
gories. Significant barriers included the need for efficient traffic manage-
ment procedures (technical), inadequate infrastructure for smart trans-
portation systems (resource), guaranteeing compatibility across a range of 
intricate transport systems and technologies (interoperability), managing, 
and administering a complex smart transportation system (management), 
cost of implementation and maintenance (economic), and privacy and 
security concerns (personal). Both Golub et al. (2019) and Waqar et al. 
(2023) identify the need for smart transportation systems to be accessible 
to all users, regardless of ability or money. Golub et al. (2019) caution  
that while smart transportation systems may have environmental bene-
fits, they may exclude disadvantaged members of the community who do 
not have access to private vehicles, banking, credit, internet, and mobile 
phones. Chen et al (2017) highlight three categories of challenges which 
could equally be viewed as critical success factors in the successful adop-
tion and implementation of smart transportation systems—institutional 
conditions (including organisational, legal, and policy aspects), technical 
conditions (concerning technology and analytics), and physical condi-
tions (infrastructure, equipment, and devices). It is important to note 
that these conditions will be contingent on the development stage of the 
city or town and the country in which it is located. Consequentyly, the 
conditions, approach, and prioritisation for smart transportation systems 
adoption and implementation should reflect local needs and constraints 
(Chen et al., 2017). In all instances, smart transportation initiatives 
should involve a wide range of stakeholders and be as transparent as 
possible (Chen et al., 2017). 

5.3 Building Energy Efficiency 

85% of buildings in the European Union (EU) were built before 2000; 
75% of which have a poor energy performance; over a third of the EU’s 
GHG emissions come from buildings (European Commission, 2024). As 
over 80% of the energy used in households is consumed for heating, 
cooling, and hot water, it is unsurprising that a significant element of EU 
policy focuses on solutions for these areas by 2050. As the overwhelming 
majority of the European building stock will continue to be in use by 
2050, the goal is to increase the energy efficiency in new and existing 
building stock dramatically by 2050 (European Commission, 2020a). 
To achieve this, EU policy seeks to ensure new builds are designed to
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higher standards of energy efficiency and that the existing building stock 
is refurbished to reduce building energy consumption by significant levels, 
so-called deep renovation (European Commission, ). 

Vale et al., (2023, p. 431) define a smart building as “cyber-physical 
solutions able to support and aid the daily routines of users and/or to 
optimize the management of the building”. They are cyber-physical as 
they combine ICTs such as building energy management systems (BEMS) 
and advances in materials and engineering such as pre-fabricated envelope 
components, biomass insulation, and energy harvesting and renewable 
energy source (RES) technologies (Lynn et al., 2021). In the context 
of digital sustainability, the twin goals of smart buildings are efficient 
energy management combined with a comfortable environment (Zhou 
et al., 2018). In their review, Al Dakheel et al. (2020) identify four main 
functions of smart buildings: 

1. Climate response: the buildings’ capability to respond to actual and 
expected external climate conditions to minimise energy consump-
tion and maximise renewable energy generation; 

2. Grid response: the building’s capability to respond to actual and 
expected data from the energy grid(s) to which it is connected to 
maximise energy and/or economic efficiencies. 

3. User response: the capability of a building to respond to user 
behaviour and priorities. 

4. Monitoring and supervision: the capability to monitor the opera-
tional aspects of the building including technical systems and user 
behaviour and take corrective action to support efficient operation 
and minimise energy consumption. 

As mentioned earlier, these functions are delivered through smart 
energy management systems including meter data management systems, 
BEMS, and building automation and control systems (BACS), their 
connection to IoT-enabled hardware and devices (e.g., sensors and actu-
ators) throughout the building and integrated into key systems (e.g., 
lighting, heating, etc.). Advanced smart energy management systems can 
monitor energy supply from the grid and building consumption and 
through analysis (increasingly enabled by machine learning and deep 
learning) identify actual or potential inefficiencies, and automatically 
adjust settings to reduce energy waste. For instance, smart lighting and
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HVAC (heating, ventilation, and air conditioning) systems can be dynam-
ically adjusted based on the energy grid supply, user behaviour, occupancy, 
and anticipated weather patterns to ensure comfort is maintained in 
an energy-efficient or cost-efficient way (Bhutta, 2017). Similarly, RES 
and other energy storage systems can be programmatically controlled to 
manage storage, use, or sell excess electricity back to the grid (Al Dakheel 
et al., 2020). 

While the integration of smart technologies into buildings offers signif-
icant potential for energy savings, their implementation is not without 
challenges. Al Dakheel et al. (2020) note that these challenges differ 
depending on whether the smart building project is a new build or a 
retrofit. Research suggests that in new builds significant challenges include 
the high cost of initial construction, lack of guidelines to manage smart 
building construction, lack of government incentives and policy, plan-
ning issues, lack of properly trained energy efficiency professionals and 
construction workers, and associated resistance to change from using 
traditional technologies, techniques and designs, external (grid) and 
internal system interoperability, amongst others (Al Dakheel et al., 2020; 
Ejidike & Mewomo, 2022; Lynn et al.,  2022). For retrofits, the barriers 
are more complex. Lynn et al. (2022) identify four categories of barriers 
to smart building technologies including human, organisational, tech-
nological, and external environmental barriers. Buildings involve a wide 
range of stakeholders including owners, managers, residents, and other 
users. Research suggests that human barriers including social norms and 
habits, lack of instruction on how to use new technologies, a lack of 
information on energy consumption and energy saving opportunities, 
short-termism, and disturbance of daily routines (Lynn et al., 2022). 
Technological barriers include those mentioned earlier with new builds 
with the added complexity that existing buildings often have legacy 
mechanical systems that have not been designed for digital connectivity 
and therefore these systems need to be optimised and integrated for 
modern smart energy management and control systems (Al Dakheel et al., 
2020). In deep renovation, again many of the challenges listed for new 
builds apply. Financial barriers, including high upfront investment costs, 
funding, the duration, and payback period of deep renovation finan-
cial investments, are widely cited in the literature (Lynn et al., 2022). 
While all smart building projects experience some degree of planning and 
regulatory challenges, retrofitting existing building stock faces additional 
challenges, not least where buildings may be protected on historical or
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cultural grounds. External environment barriers, particularly funding, can 
be compounded for social housing where local authorities have signif-
icant financing and account controls (EMBuild, 2017). Furthermore, 
while there are significant deep renovation incentives, these may be poorly 
designed (e.g., split incentives) or complex to draw down (EMBuild, 
2017; Lynn et al.,  2022). 

5.4 Smart Waste Management 

Increased urbanisation has a direct and significant impact on waste gener-
ation and management challenges. Unsurprisingly, the greater population 
densities in cities and towns result in a higher waste generation than rural 
and sparsely populated areas, but also different types of waste including 
increased volumes of electronic, chemical, and plastics waste which are 
more difficult to dispose of and recycle. This issue is exacerbated by legacy 
waste management systems leading to even greater environmental impact. 

Smart waste management (SWM) refers to the use of enabling ICTs 
for more efficient, effective, and sustainable waste management oper-
ations (Zhang et al., 2019). Extant research and applications range 
across the entire waste management lifecycle leveraging technology across 
various stages of waste management, including collection, sorting, recy-
cling, and energy recovery. Digital technologies, including IoT-enabled 
bins, geographic information systems (GIS), Radio Frequency Identifi-
cation (RFID), and advanced analytics, are transforming how waste is 
collected, transported, and tracked through the waste management life-
cycle (Hannan et al., 2015; Rada et al.,  2013; Shyam et al., 2017; 
Sosunova & Porras, 2022). For example, waste collection is increasingly 
digital and sophisticated. IoT-enabled solar-powered waste receptacles 
with built-in compactors, such those provided by Bigbelly,1 cannot only 
perform multiple functions but notify waste management services of 
the need to be collected as well as collecting data on volume, fill rate, 
and collection activity for analysis and chargeback. Similarly, automated 
vacuum-based systems, such as those offered by ENVAC,2 are being 
developed and used to capture different types of waste through stan-
dardised inlets connected to an underground pipe network in buildings

1 https://bigbelly.com/ 
2 https://www.envacgroup.com/ 
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or the public realm. Waste receptacles are emptied at pre-programed 
times or when sensors indicate that the units are full. There is also 
increasing research and application for autonomous robots for sweeping 
and steaming pavements or emptying and transporting waste receptacles 
from smart bins amongst other applications (Roche Cerasi et al., 2020). 
Once waste is collected new decision support systems are being devel-
oped using digital twinning, machine learning and deep learning that 
optimise waste collection routes dynamically, saving time and fuel but also 
reducing inconvenience (Yang et al., 2022; Barth et al., 2023; Cardenas 
et al., 2023). 

Once waste is collected, it must be sorted and segregated to support 
both energy recovery and recycling. Robotic sorting systems (see, e.g., 
Wilts et al., 2021) and automated segregation techniques based on 
machine vision can significantly improve the efficiency and accuracy of 
waste separation, essential for effective recycling (Flores & Tan, 2019; 
Mohammed et al., 2023; Sanathkumar et al., 2021). Santti et al. (2020) 
sought to use digital technologies to incentivise and change consumer 
behaviour with respect to waste sorting. By gamifying waste sorting 
and segregation, they were able to dramatically increase recycling activ-
ities within student residencies. In their experiment, the recycling rate of 
biowaste increased from 76 to 97% and the recycling rate of plastic from 
25 to 85% (Santti et al., 2020). 

At the later stages of the waste management lifecycle, intelligent 
systems are being integrated for real-time monitoring and waste-to-energy 
frameworks, highlighted in studies by Vlachokostas (2020), Curtis et al. 
(2021), Kaya et al. (2021), and Shu et al. (2022). These advancements 
not only improve the operational efficiency of waste processing facilities 
but also bolster the sustainability of energy recovery methods. 

In their survey of public and private waste management services, 
Borchard et al. (2022) find a wide range of motivations for digitali-
sation of the waste management value chain including efficiency and 
quality gains, faster payment transactions, cost optimisation, increased 
process quality, and increased competitiveness. Interestingly, environ-
mental objectives are reported as the least important objective for the 
services surveyed (Borchard et al., 2022). They may reflect the digital 
maturity of the sector and associated solutions. For example, it is far 
easier to adopt digital technologies in the administrative aspects of waste 
management than in parts of the value chain which require capital 
investments and significant changes to infrastructure.
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Zhang et al. (2019) identify 12 main barriers in their study of the 
barriers to SWM adoption and implementation, namely lack of SWM 
knowledge, lack of regulatory pressures, lack of innovative capacity, diffi-
culties in technologies and applications, lack of market pressures and 
demands, cost and other financial challenges, lack of environmental 
education and culture of environmental protection, lack of stakeholder 
cooperation, including service provider co-operation, short termism, lack 
of cluster effect, lack of leadership commitment, and finally, lack of proper 
standards of waste management. They note that the relative importance 
of these barriers may vary across different stakeholders (e.g., govern-
ment, technology provider, or technology user). In all cases, there was 
agreement that lack of knowledge of smart waste management, lack of 
regulatory pressures, and lack of environmental education and culture of 
environmental protection were important causal barriers (Zhang et al., 
2019). However, Zhang et al. (2019) identify other stakeholder-specific 
barriers. For example, technology users rated lack of innovation capacity, 
difficulties in technologies, and their applications higher than the tech-
nology providers (Zhang et al., 2019). This study provides insights into 
the need for cities and towns to consider a wide range of stakeholder 
needs in the design of any SWM initiative. 

5.5 Environmental Monitoring 

Environmental monitoring in smart cities and towns refers to the system-
atic collection, analysis, and interpretation of data concerning various 
environmental parameters, such as air and water quality, noise pollu-
tion, temperature, and humidity, using advanced technologies and IoT 
devices (Catlett et al., 2017; Kennedy, 2023). As we discussed earlier 
in Sect. 5.3, data on the external environment can determine sustain-
ability decisions within buildings (e.g., external weather changes impact 
heating and cooling requirements in buildings). However, environmental 
monitoring can also play a significant role in enhancing public health, 
and residents’ quality of life by identifying pollution sources, monitoring 
urban environmental trends (e.g., traffic, regulatory compliance), and 
facilitating data-driven decision-making for urban planning and manage-
ment. By leveraging real-time environmental data, smart cities and digital 
towns can proactively manage environmental risks, reduce pollution, and 
ensure a healthier, more liveable urban environment for their inhabitants. 
This approach not only addresses current environmental challenges but
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also contributes to the resilience and adaptability of urban areas in the 
face of climate change and rapid urbanisation. 

The University of Chicago’s Array of Things (AOT) was an exper-
imental urban measurement system based on Waggle, an open platform 
for edge computing and intelligent, wireless sensors developed at Argonne 
National Laboratory (Catlett et al., 2017). AOT provided programmable, 
modular ‘nodes’ with sensors and computing capability so that one can 
analyse data at the edge and then periodically send this data to fog nodes 
or the cloud for analysis (Catlett et al., 2017). For example, it included 
functionality for measuring climate, air quality, noise levels, flood and 
water levels, as well as counting the number of vehicles at an intersection 
(and then deleting the image data rather than sending it to a data centre). 
Use cases identified by the project included consumer recommender 
systems for healthiest and unhealthiest walking times and routes, real-
time detection of urban flooding, and micro-climate measurement and 
analysis (University of Chicago, 2021). AOT was designed to be attached 
to existing street infrastructure (e.g., lampposts), and provide insights at 
a city or municipal level. A follow-on project, Eclipse, sought to provide 
increasingly granular insights at a neighbourhood level (Esie et al., 2022; 
Daepp et al., 2022). For example, results from Eclipse were able to iden-
tify environmental-related social inequities across neighbourhoods, e.g. 
particulate matter levels were notably higher in neighbourhoods with 
larger compositions Hispanic/Latinx and Black populations at different 
times. In Gorey, a small town in rural Ireland, a similar ‘box of things’ has 
been put in place, through a collaboration between Dublin City Univer-
sity and Wexford County Council, to collect data on air quality, noise 
pollution, temperature, humidity, and traffic flow (Kennedy, 2023). One 
of the benefits of the ‘box of things’ project is to create a critical mass 
of open data for use by the public, researchers, or industry. However, as 
Janssen et al. (2012) note open data on its own has little intrinsic value; 
its value is created by its use. 

When combined with other smart city systems and sources of data, 
the value of environmental monitoring data is significantly enhanced. 
These systems include traffic control and demand management systems, 
energy demand response systems, neighbourhood, and district energy 
management systems, as well as mobile applications for citizens (Lynn & 
Wood., 2023). In all these instances, environmental data can be used to 
enhance predictive capabilities and provide insights to actuate change. 
Furthermore, environmental data can augment and be augmented by
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data from government socio-economic data on focal populations, public 
service and utility usage, climate, etc., but also new street-based tech-
nologies. For example, there are numerous examples of smart lampposts, 
street furniture, and smart kiosks that include environmental sensing for 
data collection (Gomez-Carmona et al., 2018; Baumgartner et al., 2019; 
Nassar et al., 2019). 

Environmental monitoring is not without challenges. From a techno-
logical perspective, the availability and scale of enabling infrastructure and 
technologies, and the associated funding to finance such infrastructure is 
a significant constraint (Biber, 2013; Lynn & Wood, 2023). Additionally, 
any public ambient monitoring, on the environment or otherwise, raises 
concerns regarding trust, data protection, and data security (Lopresti & 
Shekhar, 2021; Lynn & Wood, 2023). Biber (2013) also notes a number 
of institutional, political, and legal constraints including the need for insti-
tutional continuity, inter-agency conflict, lack of transparency on how data 
is being used or whether it is effective or not, and lack of skills to analyse 
and use the data effectively. 

5.6 Conclusion 

We are witnessing an unprecedented level of urbanisation combined with 
accelerated climate change. Urban areas, whether cities or towns, have 
a disproportionate impact on the environment. This chapter discusses 
the potential impact of digital technologies to proactively manage envi-
ronmental risks, reduce pollution, and ensure a healthier, more live-
able environment. Through smart transportation systems, cities and 
towns can alleviate congestion, improve and promote eco-friendly modes 
of mobility, and thereby significantly reduce carbon footprints while 
increasing safety. Smart buildings, on the other hand, offer a pathway 
to sustainable urban living by ensuring energy efficiency and fostering 
healthier indoor environments through intelligent design and operational 
practices. Furthermore, smart waste management practices enabled by 
digital technologies not only aim to reduce waste generation but also 
support and maximise recycling, reuse, and energy recovery, all of which 
contribute to a circular economy. Lastly, we discussed the critical role of 
environmental monitoring in identifying, analysing, and mitigating envi-
ronmental risks through data-driven insights. Realising smart cities and 
towns is not without challenges however an inclusive, long-term, and
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multi-stakeholder collaborative approach can help pave the way for a more 
digital, sustainable, and liveable future for generations to come. 

Funding This chapter was partially funded by the European Union’s Horizon 
2020 Research and Innovation Programme through the RINNO project 
(https://rinno-h2020.eu/) under Grant Agreement 892071. 
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Abstract This chapter discusses how smart farming technologies are 
being used to optimise and transform agricultural practices and food 
systems to make them more sustainable and resilient to the climate change 
and food security crises. These include precision farming, water-smart, 
weather-smart, carbon, and energy-smart, as well as knowledge-smart 
agricultural practices. Adoption of these technologies comes with various 
barriers and drivers which hinder or aid farmers in their transition to
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digital agriculture. These are categorised into socio-demographic, psycho-
logical, farm characteristics, technology-related, systemic, and policy 
factors. The chapter also discusses international visions of future food 
systems based on digital technology promoted by international agencies 
such as the United Nations (UN) Food and Agriculture Organisation 
(FAO), the Organisation for Economic Co-operation and Development 
(OECD), and the World Bank as well as the European policy framework 
to support and monitor digitisation in agriculture and the food system. 

Keyword Smart farming; technology adoption; policy 

6.1 Introduction 

Modern-day agriculture and the challenges it is currently facing are at the 
epicentre of international and European policy agendas. Climate change 
with its extreme and unpredictable weather patterns (e.g., extreme high 
and low temperatures, floods, and long dry periods) jeopardises food 
production causing a global food security crisis. Agriculture is expected to 
feed the rising global population which is estimated to reach 9.7 billion 
by 2050 increasing food demands by 50% (Kumar et al., 2022). At the 
same time, agriculture is a major cause of environmental degradation with 
its negative impacts on soil erosion, water use, water and air pollution, 
greenhouse gas (GHG) emissions, and biodiversity loss (Begho et al., 
2022). Smart farming technologies promise to tackle these challenges by 
enabling optimisation of resource use, increased performance and produc-
tivity while creating sustainable production systems (Pathak et al., 2019). 
The modernisation and the digitalisation of the agricultural sector are a 
high priority at international and European levels. At an international 
level, agencies such as the United Nations (UN) Food and Agriculture 
Organisation (FAO), the Organisation for Economic Co-operation and 
Development (OECD), the World Bank as well as the European Union 
(EU), with its notable Green Deal, Farm-to-Fork strategy and Common 
Agricultural Policy (CAP), pave the way to the transition of food systems 
to digital agriculture. Despite the prominent benefits associated with the 
technologies and the policies that support the transformation of the agri-
cultural sector, adoption of smart farming technologies remains slow and
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low. Various barriers hinder farmers and food systems from their tran-
sition to smart farming technologies. In order to foster transition, we 
need to understand farmer behaviour and integrate behavioural insights 
into policy design. This chapter aims to present the current trends, chal-
lenges, and policy agendas in the context of smart farming technologies 
and provide some recommendations for future research and policy. 

The remainder of this chapter is structured as follows. Section 6.2 
provides an overview of the existing smart farming technologies along 
with the evaluation of the benefits and costs associated with the environ-
mental, economic, and social dimensions. Sections 6.3 and 6.4 outline the 
barriers and drivers for adoption of smart farming technologies and the 
policy framework at both international and European levels, respectively. 
Key regulations and initiatives are discussed with respect to their impact 
in the transition to digital agriculture. Section 6.5 concludes the chapter 
with some final remarks about smart farming and sustainability. 

6.2 Smart Farming Technologies: Social, 

Environmental, and Economic Benefits 

Smart farming is seen as a pivotal strategy for breaking away from conven-
tional farming technologies and practices, offering an orchestrated path 
towards sustainable agriculture by achieving significant savings in crop 
inputs while maintaining or even increasing crop yield. This can benefit 
environmental protection resulting in less air, water, and soil pollution. 
Furthermore, smart farming contributes to food security and health 
protection while also maintaining the livelihoods of rural communities. 
As such, the adoption of smart farming technologies, including preci-
sion agriculture, water-smart, and carbon and energy-smart practices, 
coupled with knowledge-enhancement activities, is essential for realising 
a more sustainable, efficient, and socially responsible agricultural sector 
(Erickson & Fausti, 2021; Pathak et al.,  2019).  The rest of this section  
will explore the various smart farming technologies and methods, along 
with their associated benefits and costs, highlighting their potential to 
transform agriculture. 

Precision Farming 

Precision farming, also known as precision agriculture, encompasses a 
range of technologies and practices aimed at optimising various aspects
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of crop production, such as sowing, spraying, fertilisation, irrigation, 
and harvesting by optimising crop inputs which consequently lead to 
minimising environmental impact. Precision farming utilises many tech-
nologies, such as sensors, global navigation satellite systems (GNSS), 
robots, smart implements, Artificial Intelligence (AI), and Information 
and Communication Technologies (ICTs), which can be found in space, 
air, water, on ground, or below ground (Anastasiou et al., 2023b; Fountas 
et al., 2020; Liakos et al., 2018). By leveraging precision agriculture, 
farmers can make informed decisions leading to cost savings in relation to 
inputs (e.g., fertilisers, seeds, nutrients, power, and fuel), reduced waste, 
and more efficient workload management based on spatial and temporal 
variability and consequently needs (Anastasiou et al., 2023b; Fountas 
et al., 2020). Moreover, the social impact of precision farming is signifi-
cant, as it plays a crucial role in ensuring a stable food supply and reducing 
health problems across the value chain (farmers, industry workers, and 
consumers) (Talebpour et al., 2015). 

Water-Smart Agricultural Practices 

Water-smart agricultural practices, such as rainwater harvesting and 
micro-irrigation, play a crucial role in sustainable water management, 
offering significant social, environmental, and economic benefits. These 
practices can use advanced technologies (e.g., automated actuators) and/ 
or environmentally friendly approaches (e.g., rainwater harvesting, solar-
powered irrigation, and aquifer recharge). These practices are essential 
for addressing the challenges associated with water availability, access, 
and use in agriculture, particularly in the context of a changing climate 
(Frimpong et al., 2023). Moreover, water-smart agricultural practices 
help reduce pressure on traditional water sources, and minimise soil 
erosion, enhance water-use efficiency, and reduce water waste from an 
environmental perspective. Economically, water-smart agricultural prac-
tices can lead to cost savings and improved productivity. By maximising 
crop yields per volume of water applied, these practices contribute to 
enhanced resource utilisation and overall profitability. In relation to the 
social aspect, water-smart agriculture plays a significant role in ensuring 
food security and supporting the livelihoods of farming communities due 
to increased production which results to higher economic profits and 
welfare (Patle et al., 2019).
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Weather-Smart Practices 

Weather-smart practices, such as ICT-based agro-meteorological services 
and index-based insurance, are essential components of smart farming 
technologies. These practices leverage weather data and analytics to 
support informed decision-making and risk management in agriculture. 
For example, these practices are used to inform farmers of pest infesta-
tions or crop phenological stages and therefore to proceed to pest control 
or other appropriate farming practices (e.g., fertilisation, tillage), respec-
tively (Khatri-Chhetri et al., 2017). Moreover, weather-smart services play 
a significant role in crop insurance. Weather-based indices are used to 
determine crop yield loss and consequently loss in farm income due to 
extreme weather events (e.g., dry weather, heat waves, hail) (Dalhaus 
et al., 2018). From an environmental perspective, weather-smart activi-
ties contribute to sustainable resource management by optimising water 
use, reducing soil erosion, and minimising the use of chemicals and pesti-
cides. Additionally, weather-smart activities can lead to cost savings and 
improved productivity by providing real-time weather information and 
enabling farmers to optimise their operations, reduce risks, and enhance 
overall profitability. In terms of social aspects, weather-smart activities play 
a crucial role in ensuring food security and supporting the livelihoods 
of farming communities due to the better information of farmers which 
can help them prevent and mitigate production related losses caused by 
advert weather conditions. Thus, by providing access to weather informa-
tion and risk management tools, these activities contribute to sustainable 
food production and the resilience of agricultural systems (Khatri-Chhetri 
et al., 2017). 

Carbon and Energy-Smart Practices 

One other aspect to which smart farming technologies can contribute 
is related to carbon sequestration and energy consumption. Carbon and 
energy-smart practices in agriculture, such as zero-tillage and residue 
management, play a crucial role in mitigating climate change and 
promoting sustainable land use. More specifically, zero-tillage practice, 
enabled by smart farming technologies such as auto-guidance, minimises 
soil disturbance by reducing the number of times the soil is tilled, 
thereby retaining soil carbon, promoting soil health, increasing and
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decreasing fuel consumption (Javaid et al., 2022). Moreover, by incor-
porating crop residues into the soil, the soil organic matter is increased, 
resulting in soil moisture retention, and suppressed weed population. 
Another relevant practice is cover cropping. Cover cropping is the prac-
tice of cultivating crops amidst primary crop production, which serves 
as a means to maintain soil cover, rather than for yielding produce. 
This technique is geared towards enhancing soil health and fertility. It 
effectively helps in minimising soil erosion and preserving soil nutrients 
(Güven et al., 2023). Finally, crop rotation enhanced by appropriate 
farm management software can also lead to soil health improvement, 
reduced need for chemical inputs, and consequently sustainable land use 
(Lieder & Schröter-Schlaack, 2021). Thus, carbon and energy-smart prac-
tices enabled by smart farming technologies can retain soil carbon, reduce 
GHG emissions, enhance soil health, prevent soil erosion, and promote 
soil biodiversity. Economically, carbon and energy-smart practices can 
lead to cost savings by reducing the need for chemical inputs and fossil 
fuel-based energy sources and increasing efficiency. In relation to the 
social aspect, carbon and energy-smart practices integrated with smart 
farming technologies contribute to sustainable food production and the 
well-being of farming communities (Güven et al., 2023). 

Knowledge-Smart Activities 

Knowledge-smart activities, such as capacity enhancement, are integral to 
the adoption of smart farming technologies (Kangogo et al., 2021). These 
activities can be enhanced using modern technologies such as Augmented 
Reality/Virtual Reality (AR/VR). AR and VR can help farmers better 
understand smart farming technologies and practices through immersive 
digital environments. For example, farmers have the ability to virtually 
operate smart farming technologies such as robots and Internet of Things 
(IoT) devices and thus understand their benefits and constraints during 
an actual farming operation (Anastasiou et al., 2023a). Thus, the farmers 
are equipped with the necessary knowledge and skills to implement 
sustainable and climate-resilient agricultural practices without needing to 
purchase expensive farm equipment before understanding the potential 
benefits, challenges, and constraints for their farm business. As a result, 
these activities lead to increased productivity, cost efficiency, and overall 
economic gains, promote the welfare of farming communities and sustain-
able rural development, and ultimately, contribute to the food security



6 SMART FARMING TECHNOLOGIES AND SUSTAINABILITY 105

and resilience of agricultural systems (Makate, 2020; Ogunyiola et al., 
2022). 

6.3 Barriers and Drivers 

for the Adoption of Climate-Smart 

Agriculture Practices and Technologies 

Farmer adoption of digital agriculture is key to the transition towards a 
productive, sustainable, and resilient agriculture. Over the past decades, 
researchers have increasingly examined farmers’ decision-making factors 
that affect adoption of smart farming technologies (Dessart et al., 2019; 
Tey & Brindal, 2012; Willy & Holm-Müller, 2013). It is now widely 
acknowledged that farmer decision-making is a complex and multi-
faceted process that is influenced by personal, technological, organisa-
tional, institutional, and political factors (Verburg et al., 2022). When 
examining farmer transition to digital agriculture, it is important to 
adopt a food system perspective where farmers are not seen in isola-
tion but as embedded actors in the food systems in which they operate 
which pose power dynamics and trade-offs that affect their behaviour 
(Hoek et al., 2021). To examine the multiplicity of farmer decision-
making factors associated with smart farming technologies adoption 
and implementation, we adopt a wider perspective and categorise them 
into socio-demographics, psychological, farm characteristics, technology-
related, systemic, and policy factors (Hoek et al., 2021). 

Socio-demographic Factors 

Socio-demographic factors include farmer demographics (e.g., age, 
gender, education, farming experience) and household characteristics 
(e.g., size, income). The global farmer profile is characterised by older 
age and low education that pose strong barriers to the adoption of smart 
farming technologies (Bai et al., 2022; Vecchio et al., 2020). Reports 
indicate that farmer age continues to increase; it is currently 58 years 
old on average in Europe and USA, 60 in Africa and 77 in Japan 
(Saiz-Rubio & Rovira-Más, 2020). Farming experience seems to partially 
reverse the ageing effect since as experience accrues with age, farmers 
are better equipped to implement digital technologies (Tey & Brindal, 
2012). However, the ageing crisis calls for generational renewal and the
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need to attract younger and more educated farmers who are more open to 
innovations and less risk averse. Farmers’ income (both on-farm and off-
farm) plays an important role since it provides farmers with the financial 
resources to invest in new technological equipment (which is sometimes 
costly and risky) as well as with better access to credit and information 
sources (Begho et al., 2022). 

Psychological Factors 

Psychological factors encompass farmers’ cognitive, affective, and dispo-
sitional factors (Dessart et al., 2019). Among the plethora of factors 
that have been investigated in the academic literature, motives exert a 
strong influence on farmers’ behavioural shift to digital agriculture. It has 
been demonstrated that farming operations that are driven by economic 
gains, increased productivity, or preservation of family traditions are less 
likely to result in adoption of smart farming technologies compared with 
farming motives associated with conservation, modernisation, moral obli-
gation, and social embeddedness (Mazurek-Kusiak et al., 2021; Pinna, 
2017). A framework that has been prominently employed to explain 
farmer intention to adopt sustainable practices is the Theory of Planned 
Behaviour (TPB) (Ajzen, 1991). According to this theory, intention is 
shaped by three factors, namely behavioural control, subjective norms, 
and attitudes. In the context of smart farming technologies, behavioural 
control refers to the farmers’ perceived ease or difficulty to perform smart 
farming technologies, subjective norms refer to the perceptions about 
what is socially approved by significant others, and attitudes refer to 
the evaluative dispositions towards smart farming technologies. There-
fore, TPB posits that farmers are more willing to adopt smart farming 
technologies when they believe they have the ability to implement them, 
their behaviour is perceived as socially acceptable, and they hold positive 
attitudes towards these technologies. Similarly, farmers’ awareness and 
knowledge about climate change and the benefits associated with smart 
farming technologies drive sustainable behaviour (Balogh et al., 2020). 
With respect to dispositional factors, the most influential are environ-
mental consciousness and risk aversion. Farmers differ in how conscious 
they are about the impact of their farming activities on the environment 
and on their propensity to take risks, with farmers who are less envi-
ronmentally conscious and more risk averse less likely to shift to digital 
technologies (Karali et al., 2014).
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Farm Characteristics 

Of the farm characteristics examined in the literature, there is general 
agreement that farm size is a key driver of smart farming technologies 
adoption. Larger farms benefit from economies of scale, reduced costs, 
and higher investment returns compared to small and medium sized farms 
(Michels et al., 2020). Furthermore, farm ownership has been linked with 
increased adoption rates of smart farming technologies. This is because 
compared to owners, farm tenants are faced with more risks, reduced 
financial capacity while oftentimes their decisions are constrained by the 
farm owner’s will (Karali et al., 2014). Not surprisingly the availability 
of a successor affects farmers’ decisions. Previous studies indicate that 
farmers are more willing to implement smart farming technologies that 
will boost profitability and environmental status of the farm when there 
is a successor because they seek to make their business attractive to the 
future owner (Barnes et al., 2019). 

Technology-related Factors 

Technologies are usually costly to acquire but costs can be also associ-
ated with time, effort, and training requirements by the new technologies 
which render the investment risky for the farmers. Hence, costs are 
posited to be a major barrier to adoption of smart farming technologies 
(Pinna, 2017). A model that has been consistently used in past research 
to understand farmer technology adoption is the Technology Acceptance 
Model (TAM) (Davis et al., 1989). According to TAM, decisions to adopt 
are based on the perceived usefulness and ease of use of smart farming 
technologies as well as perceived compatibility (added subsequently). 
A number of technologies are still considered complex and difficult to 
use which, in turn, negatively affect technology’s usefulness for farming 
operations (e.g., farm productivity, reduced workload) and compatibility 
with current farming practices, goals, and values (Michels et al., 2020). 
Furthermore, the advent of data-driven technologies (e.g., precision agri-
culture), which require large amounts of data collected from farms, has 
given rise to data privacy and ownership concerns. Due to lack of control 
and transparency in the way data is collected and shared, farmers appear 
unwilling to share their data with technology providers and hence, to 
adopt these technologies (Kaur et al., 2022).
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Systemic Factors 

Systemic factors refer to the structures and institutions operating at the 
food systems level. The literature has only recently acknowledged that 
for food systems to shift to digital agriculture, changes are required in 
the decision-making of individuals in the whole value chain (Hoek et al., 
2021). The social environment plays a major role in farmer adoption of 
smart farming technologies. It dictates whether a behaviour is approved or 
disapproved by a community. Social influence can be manifested through 
social norms, peer pressure (e.g., family, friends, and other farmers), social 
networks, and social learning effects. Farming communities that are more 
innovative and technologically advanced exert a “neighbourhood” social 
influence making farmers mimic their behaviour (Balogh et al., 2020). 
Similarly, social learning, through peer-to-peer observation of how other 
farmers implement smart farming technologies, drive adoption (Blasch 
et al., 2021). Nowadays, farmers need to possess an array of skills to 
remain competitive, such as entrepreneurial, marketing, and communica-
tion skills. However, there is a lack of skilled farmers and as technologies 
become more complex, the gap between technology advancement and 
farmer skills is likely to widen in the future. It is widely agreed that access 
to extension and advisory services such as training courses, field visits, 
and demonstrations, as well as technical support is crucial for farmers. 
Proper training and advice are linked with farmer upskilling and increased 
adoption of smart farming technologies (Blasch et al., 2021). A novel 
approach to facilitate transition to smart farming technologies is the use 
of collective and participatory approaches. In this sense, the collabo-
ration and frequent interaction between farmers and other food actors 
(e.g., processors, retailers, and consumers) is expected to facilitate farm-
ers’ access to resources, knowledge sharing, and co-creation of pathways 
to change. The building of social capital will foster collective action ulti-
mately resulting in transition of entire food systems to smart farming 
technologies (Pinna, 2017; Willy & Holm-Müller, 2013). 

Policy Factors 

Policies set the regulatory framework in which the food actors operate 
by specifying policy targets towards sustainability. Overall, policies are 
viewed in a positive light because they provide farmers with the financial
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means and incentives to support the transition to smart farming tech-
nologies. However, not all policy instruments are equally effective. In 
a European context, a comparative analysis of CAP instruments indi-
cated that measures such as direct payments were less successful in 
triggering change compared to greening measures, extension and advi-
sory services, and better access to information sources (Linares Quero 
et al., 2022). Moreover, a number of farmers identify inadequate compen-
sations, bureaucratic procedures, and heavy penalties for mistakes as 
burdens in policy implementation (Chatzimichael et al., 2014; Pinna, 
2017). 

6.4 International and European 

Regulatory Framework 

The transition to digital agriculture is considered critical by current 
international and European policymakers. International agreements and 
support from agencies such as FAO, OECD, and the World Bank along 
with European policies, such as the CAP and the European Green 
Deal, aim to promote the sustainable development of national digital 
agricultural systems for a sustainable, fair, and competitive future. 

International Perspective 

At an international level, three key organisations, namely the FAO, 
OECD and the World Bank, set the international vision for future food 
systems by influencing the design, implementation, and funding of digital 
agricultural transformation. Two major international agreements influ-
ence agricultural and food policies, strategies, and actions from the global 
to local level. The first is the 2030 Agenda for Sustainable Development, 
and its Sustainable Development Goals (SDGs), adopted in September 
2015 (United Nations, 2015). Among the 17 goals and 169 targets, SDG 
1 (No poverty), SDG 2 (Zero hunger), and SDG 9 (Industry, innovation, 
and infrastructure) represent the building blocks of agricultural policy and 
establish digital technologies as enablers of sustainable development. The 
second is the Paris Agreement reached in December 2015. It set out 
sustainability challenges, especially about meeting climate and biodiver-
sity targets and raised the importance of fully realising the development 
and transfer of technology to improve resilience to climate change and to 
reduce GHG emissions (United Nations, 2015).
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In 2016, OECD Agriculture Ministers issued a Declaration on Better 
Policies to Achieve a Productive, Sustainable, and Resilient global food 
system, which placed a high priority on digitalisation (OECD, 2016). The 
document outlined a set of shared goals and policy principles to ensure 
an integrated approach to agriculture and food policies emphasising inter-
national cooperation, particularly in trade, investment, innovation, and 
climate change (OECD, 2016). In the same year, the FAO and the 
International Telecommunication Union (ITU), together with support 
from partners, developed the e-Agriculture Strategy Guide aiming to 
assist countries in developing their national digital agriculture strategy by 
identifying services and solutions based on the use of agricultural digital 
technologies (FAO, 2016). The FAO further piloted a regional eAgri 
Index to assess the preparedness of European and Central Asian countries 
in formulating and implementing a digital transformation strategy and to 
provide guidance for the areas of emphasis for strategising (e.g., infras-
tructure, business environment, etc.) (FAO, 2018). The digital divide 
between small and large farms, and between developed and developing 
countries remains a key concern for international organisations and mainly 
lies in differences in skills, access to information and market environment. 
For instance, the OECD notes differences in the capacity of countries 
to generate digital knowledge by evaluating the share of expenditure for 
research and development in the total value of agricultural output. The 
USA, the Netherlands, and South Korea, for example, achieved 2.7% 
compared to 0.5% for Canada and Switzerland (Revenko & Revenko, 
2019). To reduce the digital divide and ensure easy access to market 
data and information, the FAO embarked on creating open information 
platforms to disseminate information in the food and agriculture sectors 
such as the monitoring of prices, supply, and demand for food products 
(Revenko & Revenko, 2019). 

More recently, in 2021, the World Bank developed a Roadmap for 
Building the Digital Future of Food and Agriculture for countries to scale 
up their digital agriculture (Schroeder et al., 2021). Here, the importance 
of innovation ecosystems, value chain actors, competition in markets, 
and research and development are recognised as critical for the digital 
transformation of food systems. The report also stresses the key role of 
governments in enabling access to agricultural data by providing access 
to open data and data-sharing platforms, setting data interoperability 
standards, and promoting FAIR (Findable, Accessible, Interoperable, and 
Reusable) principles for data use (Schroeder et al., 2021).
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Finally, the OECD reports the importance of using digital technologies 
in agricultural policy because they improve the efficiency and accuracy of 
decision-making and support data-driven strategies and policies. Digital 
technologies enable better data-driven monitoring and compliance mech-
anisms, the enablement of targeted policies, and the better evaluation of 
the environmental impact of agriculture (OECD, 2019). 

European Perspective 

The EU is committed to become a forerunner in achieving the SDGs. 
Consequently, in September 2021, the European Commission (EC) 
proposed a Path to the Digital Decade (European Commission, 2021). 
The policy programme, guided by the 2030 Digital Compass, sets 
concrete targets and objectives for 2030 as a roadmap to Europe’s digital 
transformation. The roadmap is focused on four pillars—digital skills, 
secure and performant digital infrastructure, digital transformation of 
businesses and the digitalisation of public services and proposes a set 
of cooperation mechanisms (European Commission, 2021). Before the 
Digital Decade Policy Programme (DDPP), the Digital Single Market 
strategy paved the way for bridging the digital divide between urban and 
rural areas and across EU member states, and for providing high-speed 
connectivity across the EU. This initiative offered many opportunities 
for agriculture and the food value chain to become smarter, more effi-
cient, and more connected and was later expanded by the Strategy for 
Connectivity for a European Gigabit Society (European Commission, 
2015). Additionally, the EU Cohesion Policy makes a key contribution 
to delivering Digital Single Market objectives on the ground, through 
significant financial allocations from the European Regional Development 
Fund (ERDF), aiming to overcome the digital divide both socially and 
geographically. To monitor progress towards the 2030 targets, the Digital 
Economy and Society Index (DESI) was established to evaluate Europe’s 
digital performance based on a set of indicators capturing the four pillars 
of the DDPP. The 2022 report showed that, although EU member states 
are making progress towards digital transformation, insufficient digital 
skills, lack of connectivity infrastructure and investments along with low 
adoption of key digital technologies, such as AI and Big Data hamper 
growth (European Commission, 2022). 

The European Green Deal comprises a set of policies that provide a 
roadmap to the green transition and the realisation of the SDGs following
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a just and inclusive transition of the food systems. In its Farm-to-Fork 
strategy, the flagship initiative of the legislative framework for sustain-
able food systems, it demonstrates the commitment to digital innovation, 
knowledge, and skills development in the agricultural sector. More-
over, the CAP, the main EU agricultural policy, currently accounting 
for 40% of the EU budget, operates a complex system of subsidies and 
support measures for the agricultural sector. A key objective for the 
period 2023–27 is for member states to form their national CAP strategic 
plans to modernise agriculture and rural areas through fostering and 
sharing knowledge, innovation, and digitalisation (European Commis-
sion, 2023b). The present CAP tools and interventions to favour the 
adoption of digitalisation are:

• Direct payments and eco-schemes to provide financial support for 
the adoption of sustainable practices;

• Sectoral interventions (e.g., fruit and vegetables, etc.) to invest in 
digital technologies at any stage of the supply chain;

• Investments in rural development, for instance for broadband 
connectivity or the installation of digital technologies;

• Farm advisory services on digital transformation of agriculture and 
rural areas;

• Knowledge exchange, dissemination of information, and training 
to boost digital skills, with strengthening the role of Agricultural 
Knowledge and Innovation Systems (AKIS). 

At the regional level, Smart Specialisation Strategies aim to strengthen 
digitalisation. They focus on identifying the regions’ competitive assets 
and strategic areas for investment, and foster innovation partnerships 
through better collaboration between different societal stakeholders. The 
2023 European Council’s report, Conclusions on a Long-Term Vision for 
Rural Areas (LTVRA), highlights that rural areas are essential contrib-
utors to EU prosperity and economic strength and to the green and 
digital transitions, assuming a pivotal role in matters such as food produc-
tion (European Council, 2023). Digital technologies can contribute to 
the development of rural areas by providing better accessibility and 
connections (European Council, 2023). Additionally, the 2020 Industrial 
Strategy announced actions to support the green and digital transitions
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of EU industry. These actions include: (1) provide a coherent regula-
tory framework to achieve the objectives of Europe’s Digital Decade; (2) 
provide SMEs with Sustainability Advisors and support data-driven busi-
ness models to make the most out of the green and digital transitions; 
and (3) invest in the upskilling and reskilling of workforce to support the 
twin transitions (European Commission, 2020). The EU provides various 
other sources of funding that can be tapped to promote digitisation of 
agricultural sector, such as the Horizon Europe research and innova-
tion programme and the agricultural European Innovation Partnership 
programme (EIP-AGRI). 

Issues of data sharing and open access data have raised data privacy and 
ownership concerns. The lack of agricultural data is viewed as an imped-
iment in the design of informed policies, better decision-making as well 
as monitoring and control procedures. The Declaration, A Smart  and  
Sustainable Digital Future for European Agriculture and Rural Areas, 
noted the importance of using the European space programmes, EGNOS 
and Galileo, and the Earth observation programme, Copernicus, for more 
accurate and efficient agricultural operations (Kondratieva, 2021). More-
over, the Directorate-General for Agriculture and Rural Development 
(DG AGRI) collaborates with the Directorate-General for Communica-
tions Networks, Content, and Technology (DG CONNECT) to develop 
a common European agricultural data space to provide for the digital 
transformation of Europe’s farming industry. Current actions are co-
funded through Horizon Europe. Finally, the European Data Strategy 
aims to set the framework for data governance by facilitating data access 
and sharing for farmers and value chain actors, creating data interoper-
ability standards, and setting standards that address any risks associated 
with data use (European Commission, 2023a). 

6.5 Conclusion 

In conclusion, agricultural sector and food systems can benefit from 
digital transformation and the transition to smart farming. The latter 
includes an array of technologies ranging from precision farming, 
to water-smart, weather-smart, carbon and energy-smart as well as 
knowledge-smart practices. These technologies have been associated with 
positive environmental, social, and economic outcomes. Despite the tech-
nologies being there for some time, evidence suggests that adoption
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remains slow and is hampered by various socio-demographic, psycholog-
ical, farm and technology-related, systemic and policy factors. The policy 
landscape at the international and EU level is active in setting the stan-
dards, framework and regulations for the transition to digital agriculture. 
International organisations, such as the FAO, OECD and the World Bank 
influence policy-making while the EU has set a number of policies and 
initiatives to enable transformation. However, monitoring, control, and 
evaluation mechanisms are currently lacking, and hence, it is difficult to 
measure the effectiveness of these policies. 

Future research is needed to explore the benefits and costs associated 
with various smart farming technologies. In particular, while the environ-
mental and economic benefits and costs have been extensively studied in 
the past, evidence about the social impacts is stil nascent Understanding 
all three aspects of impacts will enable us to evaluate the overall sustain-
ability of the various smart farming technologies by accounting for the 
trade-offs that may exist between environmental, social, and economic 
impacts. Moreover, more evidence on the role of systemic factors in 
farmer decision-making is required. A food system approach to the digital 
transformation of the agricultural sector acknowledges the significance 
of other actors, systems, and structures on farmers’ decisions to adopt 
smart farming technologies. Gathering more insights on how the factors 
affect behavioural shifts and how future strategies can capitalise on their 
effect will be valuable. On the policy side, studies need to investigate the 
impact of various policies on the transition using quantitative or qual-
itative methodologies. Currently, several policies are in place but their 
performance in achieving their targets is unknown. Therefore, evaluation 
studies will enable measurement of their performance and adjustment or 
tailoring of policies where needed. 

By providing incentives and removing barriers to adoption, govern-
ments can create a conducive environment for farmers to adopt smart 
agricultural technologies. Future policies need to take advantage of 
the availability of agricultural data to inform better decision-making, 
policy design, and monitoring. Policymakers need to create environ-
ments that enable access to data and data sharing by addressing issues 
concerning data privacy, ownership, and data interoperability. This will 
facilitate a performance-based policy design and implementation by 
allowing measurement of progress towards policy targets, enable the 
design of targeted policies while reducing the information asymmetries 
and power imbalances in the food systems. Based on the analysis above
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it is evident that future policies need to be behaviourally-informed rather 
than focusing on the rational-agent model. For instance, farmer differ-
ences that arise from different ages, incomes, farm sizes, economic vs 
environmental objectives, access to markets and credit, social influences 
should be taken into account and be differentially addressed by policies in 
order to remove barriers to adoption. When designing policies to foster 
the adoption of smart farming technologies, local entities and govern-
ments should engage in a proactive dialogue that engages farmers and 
other value chain actors, such as advisors, technology providers, proces-
sors, and retailers. Participatory and collective decision-making has been 
shown to effectively result in digital transformation of the agricultural 
sector. Finally, to increase policy coherence, there is a need for a system-
atic and inclusive assessment of current policies. Hence, policies need to 
establish certain monitoring and control mechanisms with specific set of 
indicators that will evaluate performance and enable to measure progress 
towards the targets and ultimately to the SDGs. 
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Digital Technologies for Sustainable Product 
Management in the Circular Economy 
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Abstract This chapter provides comprehensive insights into the poten-
tial of digital technologies for sustainable product management (SPM). 
Four key technologies (Artificial Intelligence, Big Data analytics, the 
Internet of Things, and blockchain) and their application for SPM are 
presented and discussed. Their potential is explored with regard to Life 
Cycle Assessment and Product Service Systems. Furthermore, the concept 
of the digital product passport is discussed, and their use in an SPM 
context is illustrated with reference to electric vehicle batteries. This 
chapter concludes with a critical reflection on the deployment of digital
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technologies for SPM and associated challenges relating to ethical and 
sustainability concerns. 

Keywords Blockchain · Artificial intelligence · Big Data · Circular 
economy · Electric vehicle batteries · Digital product passport 

7.1 Introduction 

In an age characterised by rapid technological changes and ecological 
challenges, the interplay between digital technologies, circularity, and 
sustainable development gains significant attention. This chapter explores 
this nexus with a particular focus on sustainable product management 
(SPM). SPM represents an umbrella term that includes several established 
concepts and strategies underpinning a comprehensive sustainability-
oriented management on the product level (Rusch et al., 2023). Those 
concepts comprise, among others, sustainable supply chain management, 
eco-design and design for sustainability, sustainability assessments, and 
in particular, the circular economy (Rusch et al., 2023). The circular 
economy is described as an economic system aimed at minimising waste 
and making the most of resources, representing a shift from the traditional 
linear model of ‘take, make, dispose’ to a more sustainable approach of 
reuse, repair, recycle, and regenerate (Reike et al., 2018). 

Digital technologies such as Artificial Intelligence (AI), Big Data, the 
Internet of Things (IoT), and blockchain are central to the current wave 
of technological advancements. They offer innovative ways for SPM as 
they can track, analyse, and optimise material and energy flows and 
resource use along a product’s life cycle, thereby supporting the idea 
of circularity and sustainability. This chapter delves into the research 
question: How can digital technologies support sustainable product 
management, i.e. help to improve sustainability and circularity of products 
along their life cycle? 

The practical application of these technologies is varied and profound. 
From enhancing efficiency in practice to playing a crucial role in Life 
Cycle Assessment (LCA), these technologies offer a new lens through 
which sustainability and circularity can be viewed and managed. An
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interesting and new application is the development of digital product pass-
ports. In this chapter, we illustrate this through a case study on electric 
vehicle batteries. 

The remainder of this chapter, which is based on the research activ-
ities and specific publications of the Christian-Doppler-Laboratory for 
Sustainable Product Management, is structured as follows. Sections 7.2 
and 7.3 provide an overview of the application of digital technologies 
in manufacturing companies and in LCA, respectively. Then, Sect. 7.4 
presents the potential of digital product passports and illustrates this 
through a case study on their use for SPM in the context of electric 
vehicle batteries. Finally, Sect. 7.5 concludes the chapter with a discus-
sion of some of the ethical and sustainability concerns relating to the 
use of digital technologies in SPM and some potential avenues for future 
research. 

7.2 Application of Digital Technologies 

for Sustainable Product Management 

and Product Service Systems 

As outlined above, digital technologies have considerable potential to 
facilitate the transition to a more sustainable and circular economy. 
However, to leverage the full potential of these technologies, it is 
paramount to understand their individual and combined benefits and use 
cases. Rusch et al. (2023) provide a comprehensive mapping of current 
and potential examples of AI, Big Data analytics, IoT, and blockchain 
technology in the context of sustainable and circular product manage-
ment. The authors focused on these four digital technologies because they 
are perceived as essential enablers for accelerating the transition to more 
circular value chains and the dematerialisation of the economy (European 
Commission, 2020a). In their systematic review of the scientific litera-
ture,146 examples were identified in 186 scientific papers where digital 
technologies are or could be applied to SPM. Of the 146 examples, 66 of 
them featured a case study or a real-life example (Rusch et al., 2023). The 
other 80 examples were only conceptual descriptions of potential appli-
cations of digital technologies for SPM. The study highlights that the 
potential of digital technologies covers the entire product life cycle, from 
the beginning to the end-of-life phase (Rusch et al., 2023). Most of the
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examples presented in Rusch et al. (2023) relate to IoT, followed by Big 
Data analytics, blockchain, and AI. 

As can be seen in Fig. 7.1, most studies only describe the general 
potential that digital technologies can offer to SPM (i.e. the first line in 
the figure). Less often, the examples could be assigned to one of the 
following four areas of SPM: supply chain management, (sustainability) 
assessment, product design, and business modelling. The technologies 
also vary according to the benefits they offer to SPM with IoT, Big Data, 
and AI mostly focusing on increasing the efficiency of existing processes, 
while blockchain applications aim to increase transparency and trust-
worthiness in exchanging information along value chains (Rusch et al., 
2023).

Figure 7.2 presents more details on the specific SPM activities that 
can be supported by one or more of the four digital technologies (Rusch 
et al., 2023). A total of 23 specific activities were identified in the study 
(Rusch et al., 2023). AI appears to be related to only four of these activ-
ities, namely supplier selection, Life Cycle Inventory (LCI) modelling, 
condition monitoring, and R-strategies (i.e. Reuse, Repair, Refurbish, 
Remanufacture, or Recycle). IoT was most often discussed concerning 
its use for (predictive/preventive) maintenance, followed by its use for 
condition monitoring of products and processes, the collection of data 
relevant to R-strategies, or for monitoring energy demands (Rusch et al., 
2023). Big Data analytics is often discussed and used in conjunction with 
data collection from IoT sensors, such as in the case of maintenance 
(Rusch et al., 2023). However, it is also used on data from other sources, 
such as in the case of trend mining or risk assessment (Rusch et al., 2023). 
Finally, while blockchain can add a layer of trust to processes in which 
other technologies are involved, it also has individual applications, such 
as in compliance-related data exchange along value chains or incentives 
(Rusch et al., 2023).

In summary, Rusch et al. (2023) highlight that digital technologies 
have considerable and wide potential for facilitating SPM practices. To 
date, most applications have primarily resulted in incremental improve-
ments (e.g., increased efficiency of existing processes), with more radical 
forms of improvement remaining relatively uncommon. Thus, there is 
room for a wider and effective utilisation of digital technologies in various 
areas of SPM to accelerate the transition towards a more sustainable and 
circular economy.
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The ways in which digital technologies are leveraged for sustainable 
business practices is highlighted by another review by Neligan et al. 
(2023). The authors report the findings of a representative survey of 
583 German companies. The study shows that the degree of digitali-
sation of a company correlates positively with the adoption of Product 
Service Systems (PSSs) for resource efficiency. PSSs refer to combined 
product and service offerings (Ingemarsdotter et al., 2020). They can 
enable reduced resource use as respective business models are based on 
access rather than ownership (Ingemarsdotter et al., 2020). Thus, one 
product may satisfy many customers’ need for a specific function which 
is in particular of interest in case of products that are seldomly used 
(Ingemarsdotter et al., 2020). As can be seen in Fig. 7.3, the use of 
PSS for resource efficiency increases with the degree of digitalisation in 
general and of the business model in particular. While only around a third 
of computerised companies (i.e. that use information and communica-
tion technology and/or electronic data processing) use PSS, considerably 
more (approximately three out of five of fully digitalised firms—i.e. firms 
with virtualised products) use PSS for resource efficiency. The same can 
be seen when comparing companies according to their business model, 
where those with data-driven business models (BMs) considerably more 
frequently employ PSS than those with computerised or traditional BMs. 
One reason why PSS for resource-saving become more common with an 
increasing degree of digitalisation is that additional services to a product 
often depend on the exchange of data and digital networking (Neligan 
et al., 2023). In addition, company size also plays an important role as 
PSS for resource-saving is considerably more often used in large firms 
than small to medium enterprises (SMEs).

One common takeaway from the two empirical studies by Schöggl 
et al. (2023) and Neligan et al. (2023) is that companies must prevent 
potential lock-ins and economic and environmental rebound effects in 
their digitalisation efforts. This entails more explicit recognition of the 
specific purposes for which digital technologies may be applied. In rela-
tion to this, Sect. 7.3 will provide deeper insights into the potential of 
digital technologies in the context of LCA and Sect. 7.4 regarding digital 
product passports.
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Fig. 7.3 Degree of use of product service systems for resource efficiency. Ques-
tion: To what extent does your company use the following ways/options to use 
resources efficiently? (N = 583) (Neligan et al., 2023)

7.3 Application of Digital 

Technologies for Life Cycle Assessment 

LCA is a methodological framework that allows one to estimate and assess 
environmental impacts linked to the life cycle of a product (Finnveden 
et al., 2009). The distinct feature of LCA is the applied life cycle perspec-
tive (i.e. from cradle-to-grave) to assess the impacts of a product, thus 
avoiding burden shifting (Finnveden et al., 2009). LCA studies comprise 
in general four phases. First, the goal and scope of the LCA study need 
to be defined (Finnveden et al., 2009). This phase comprises a descrip-
tion of the product system under study in terms of system boundaries 
and a functional unit (Rebitzer et al., 2004). The functional unit enables 
the comparison between alternative goods and services (Rebitzer et al., 
2004). This phase is of importance as it influences methodological and 
data choices for subsequent LCA study phases (Rebitzer et al., 2004). The 
second phase is the Life Cycle Inventory (LCI) analysis (Finnveden et al., 
2009). The LCI comprises a compilation of the inputs (i.e. resources)
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and outputs (i.e. emissions) of the product system of interest; those 
inputs and outputs are in relation to the previously defined functional 
unit (ibid.). The third phase is the Life Cycle Impact Assessment (LCIA) 
and is designated to interpret the inventory results of the LCI analysis 
phase (Finnveden et al., 2009). This phase involves the selection of impact 
categories and classification, the selection of characterisation methods and 
characterisation, normalisation and weighting (ibid.). The fourth phase 
is entitled interpretation (Finnveden et al., 2009). This phase is desig-
nated to evaluate the results from the previous study phases in relation to 
the goal and scope, enabling to reach conclusions and recommendations 
(Finnveden et al., 2009). 

As briefly mentioned earlier, digital technologies can enhance the accu-
racy and efficiency of conducting LCA. This specific potential is analysed 
by Popowicz et al. (2024) in a recently published systematic literature 
review of 104 peer-reviewed papers at the intersection of IoT, blockchain, 
AI, Big Data, and LCA research. These were categorised across the four 
phases of LCA according to the ISO 14040/44 standard (ISO, 2006): 
(1) Goal and Scope, (2) LCI, (3) LCIA, and (4) Interpretation. 

With regard to IoT devices, Popowicz et al. (2024) find that their 
use occurs predominantly in the collection of (real-time) data in the LCI 
phase. For example, IoT sensors can be used to collect manufacturing 
process data (Garcia-Muiña et al., 2018), such as machine’s electricity 
consumption easing the collection of accurate primary data (Tao et al., 
2014). LCA-related data can also be stored directly on components 
and combined with data from decentralised IoT sensors and data from 
centralised repositories (Van Capelleveen et al., 2018). 

While blockchain is less often discussed than IoT, it has the potential 
to increase the transparency and reliability of the primary data collected 
in value chains (Popowicz et al., 2024), benefitting all four phases of an 
LCA. Specific applications identified in the literature encompass, among 
others, data reliability, data traceability, data collection, data exchange, 
and data validation in LCA (Popowicz et al., 2024). One example from 
the literature refers to the use of a blockchain for carbon footprint 
tracking in food supply chains based on IoT data collected from trucks 
(Shakhbulatov et al., 2019). Another example comes from Rolinck et al. 
(2021), who propose a blockchain-based data management approach for 
LCA in aircraft maintenance and overhaul.
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Of the four technologies studied by Popowicz et al. (2024), AI was 
discussed most often in the sample, and a wide range of potential appli-
cations in all four phases of LCA were identified (Popowicz et al., 2024). 
With regard to the goal and scope phase, one of the reviewed studies 
demonstrated how relevant aspects, such as the lifespan of buildings, can 
be predicted using machine learning (Ji et al., 2021). In the LCI phase, 
AI can, for instance, help estimate missing unit process data, as shown by 
Zhao et al. (2021), who use a decision tree-based approach, or Khadem 
et al. (2022), who predict impact data using neural networks. In the LCIA 
phase, characterisation factors can be estimated, uncertainties quantified, 
or results predicted (Popowicz et al., 2023). For instance, Hou et al. 
(2020) illustrate how machine learning can be used for estimating eco-
toxicity characterisation factors and specifically hazardous concentration 
levels. Dai et al. (2022) developed a framework for obtaining best-fit 
secondary data, employing Gaussian process regression (GPR) models to 
predict secondary data based on covariance functions. Concerning the 
interpretation phase, Romeiko et al. (2020) demonstrate how machine 
learning can be used to identify key contributors among various factors 
to the life cycle impacts. 

Lastly, Popowicz et al. (2024) find that Big Data analytics can facili-
tate the second, third, and fourth phases in an LCA: in the LCI phase, 
Big Data analysis helps in extracting and managing large datasets. An 
example is a data-mining-based approach for obtaining data for the fore-
ground system from scientific articles (Belaud et al., 2022). During the 
impact assessment, it can be used for uncertainty reduction and enhanced 
analysis, for instance of highly granular data from a product’s use phase 
(Ross & Cheah, 2019). 

7.4 Digital Product Passport 

for Electric Vehicle Batteries 

A digital product passport (DPP) is described as an electronic record that 
resumes the function of a unique product identifier and product life cycle 
data carrier (European Parliament, 2023). Consequently, a DPP can be 
envisioned as a digital technology-based tool that can support the estab-
lishment of circular information flows along value chains (Berger et al., 
2023a; Jensen et al.,  2023). This instrument holds promise to enhance 
the sustainability and circularity of various industries. For example, in the 
building industry DPPs are perceived to contribute to greater circularity
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as those tools could support the end-of-life management (e.g. reuse, recy-
cling) of buildings via recording, storing, and sharing information about 
incorporated materials and components (Cetin et al. 2023). Consid-
ering the electronics and information and communication industry, DPPs 
enhance transparency along the value chain by enabling the support of 
audits and verification of sustainability claims, contributing to greater 
trust among stakeholders (Navarro et al., 2022). Similar potential benefits 
(i.e. increased transparency, verification of sustainability claims) are also 
anticipated for the textile industry (Jaeger and Myrold 2023). Further-
more, by including detailed material compositions, a DPP could support 
sorting and selecting textile waste more accurately, as well as support the 
identification of appropriate recycling pathways (Niinimäki et al., 2023). 

Due to the previously described potential to bridge data gaps, the 
idea of DPPs has recently received increased attention. This is mirrored 
in policy papers (European Commission, 2020a, 2020b), upcoming 
regulation (European Commission, 2022; European Parliament, 2023), 
industry initiatives (Battery Pass Consortium, 2023; Global Battery 
Alliance, 2020), and sustainability research (Adisorn et al., 2021; Berger  
et al., 2022; Jensen et al.,  2023). In particular, batteries have received 
increased attention as regulatory bodies are demanding the deployment 
of DPPs for this particular product group (European Parliament, 2023). 
This increased interest is founded in the perception that DPPs can support 
the establishment of a sustainable European battery ecosystem (Euro-
pean Commission, 2022; European Parliament, 2023). This is of interest 
because an increase in demand of electric vehicle batteries (EVBs) is 
projected due to the electrification of powertrains (Neumann et al., 
2022). When pursuing SPM for EVBs, actors along the product life cycle 
have different established strategies and concepts at their disposal (Berger 
et al., 2022). As discussed earlier, these include sustainable product devel-
opment, life cycle management, sustainable supply chain management, 
or the circular economy (Berger et al., 2022; Rusch et al., 2023). The 
concept of the circular economy has received particular attention as it 
comprises value-retention strategies such as repurposing and recycling 
(Kiemel et al., 2020). As the listed concepts and strategies affect different 
levels of the EVB production system (Huamao & Fengqi, 2007), it can 
be argued that respective decision situations are characterised by high 
complexity (Rusch et al., 2023). Thus, decision-makers require high-
quality product life cycle data for respective decision support (Rusch et al., 
2023). As previously discussed, persistent data gaps along the product
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life cycle pose a challenge when pursuing SPM. This has also been found 
for the EVB life cycle (Berger et al., 2023a). Such data gaps could be 
bridged by a DPP if it were to provide seamless product life cycle data 
allowing relevant actors to derive information needed to support SPM 
(Berger et al., 2023a). 

Conceptualisation of a Digital Product Passport for Sustainable 
Battery Management 

The conceptualisation and development of a DPP for sustainability-
oriented EVB management requires consideration of a holistic life cycle 
perspective (Berger et al., 2022; Rusch et al., 2023). Thus, the entire 
life cycle of an EVB needs to be considered when pursuing strategies 
and concepts for improving its sustainability and circularity (Berger et al., 
2023a). Furthermore, a comprehensive life cycle perspective is required 
to identify decision-makers and their respective SPM-related decision situ-
ations along the EVB life cycle (Berger et al., 2023a. This allows one to 
derive corresponding data needs and requirements that a DPP needs to 
fulfil to support SPM (Berger et al., 2023a). The EVB life cycle can be 
partitioned into four phases: the beginning-of-life (BoL), middle-of-life 
(MoL), end-of-life (EoL), and battery second use (B2U). For illustra-
tion purposes, four corresponding value chain actors have been selected 
to highlight their specific SPM use cases and current data management 
challenges. 

Battery Designer and Developer 
The product design is critical for incorporating sustainability and circu-
larity aspects in an EVB (Diaz et al., 2021). To address sustainability 
issues, product design-affiliated actors require information about the 
sustainability performance of an EVB. This is currently challenging 
due to the lack of primary data that is needed for the assessment 
(Buchert et al., 2015; Diaz et al.,  2021). Thus, DPPs of in-use and 
retired EVBs could serve to establish information feedback to the early 
design stage, providing designers with information about (dynamic) 
sustainability performances based on primary product life cycle data. 
Furthermore, information feedback of B2U and EoL process efficiencies 
(e.g. encountered challenges during EVB disassembly) could support the 
consideration of circularity aspects in future EVB designs.
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Original Equipment Manufacturer 
To identify and support suitable SPM strategies and concepts, an original 
equipment manufacturer (OEM) requires information about the EVB’s 
sustainability performance from cradle-to-grave (Berger et al., 2022). This 
would allow the OEM to identify life cycle hotspots and thus, to define 
appropriate strategies for improvement (Berger et al., 2022). The current 
challenge lies in the lack of high-quality product life cycle data to support 
sustainability assessments. In this case, a DPP of in-use, as well as retired 
EVBs, would be beneficial as it could provide either product life cycle 
data needed for sustainability assessments or could even directly provide 
information about an EVB’s sustainability performance. In addition, if a 
DPP were to provide value chain actor information an increase in value 
chain transparency could support the identification of those value chain 
actors that require support to improve upon the sustainability of their 
value-adding activities. 

Third-party Actor Focusing on Repurpose 
To identify suitable EVBs, or rather EVB modules for B2U appli-
cations information about their state is vital (Berger et al., 2023b). 
For this purpose, at a minimum, information about an EVB’s state-
of-health is required (Nigl et al., 2021). However, additional in-use 
battery data is also beneficial to make more accurate statements about 
battery health. The current challenge lies in the inaccessibility of battery 
in-use data by third-party actors that want to establish B2U business 
models (Berger et al., 2023b). Furthermore, disassembly instructions are 
required to produce B2U applications and support an efficient produc-
tion process (Berger et al., 2023b). Consequently, a DPP could prove 
valuable if containing battery in-use data, as well as information about 
EVB disassembly. 

Recycler 
To ensure safe EVB handling and storage recyclers need information 
about the EVB status in terms of safety (i.e. how dangerous is the EVB at 
hand) (Berger et al., 2023b). This requires information about the EVB’s 
state-of-health or even control over battery in-use data (Nigl et al., 2021). 
However, such information is not transferred from the MoL to the EoL 
phase (Berger et al., 2023b). Furthermore, information about the mate-
rial composition is of interest to support the design of efficient recycling 
processes (Berger et al., 2023b). This concerns the composition of the
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battery chemistry, as this allows to design recycling processes that can 
recover battery-grade secondary material (Berger et al., 2023b). In addi-
tion, disassembly instructions are considered highly valuable for recyclers, 
as they facilitate the design of the recycling process (Berger et al., 2023b). 
Consequently, a DPP that could transfer such product and product status 
data from the MoL to the EoL phase would prove useful. 

Digital Product Passport Concept for Sustainable Product Management 

In light of the SPM use cases presented above and the consideration of 
a holistic life cycle perspective, the sustainability-oriented management 
of an EVB requires control over four major information categories (see 
Fig. 7.4):

• Product information—this category contains information that allows 
the decision-maker to clearly identify the product of interest. 
Thus, it ranges from general information (e.g. battery chem-
istry, battery type, manufacturer) to more specific information 
(e.g. performance-related information, electrical engineering-related 
properties, material-related properties).

• Value chain actor information—this category contains information 
that enables clear value chain actor identification and, thus greater 
value chain transparency. As well as general information, such as 
value chain actor name or type, it includes information about the 
chain of custody (e.g. for materials and components).

• Sustainability and circularity information—this category includes 
information about the sustainability and circularity properties of an 
EVB. Regarding sustainability properties, information includes both 
social and environmental sustainability performance data. Further-
more, inventory data, applied assessment, and calculation methods 
are considered enabling greater understanding of respective key 
performance indicators. Regarding circularity properties, as well as 
information about the circularity performance, information about 
the product design is included in terms of disassembly and repair 
options.

• Diagnostics, maintenance, and performance information—this cate-
gory comprises data points such as state-of-health and state-of-
charge. In addition, information about the maintenance history 
(including triggers for needed maintenance actions) are included in
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this category whice can support value-retaining strategies enabling a 
B2U.

While the vision of DPP functioning as product life cycle data carrier 
has great potential for SPM support, possible challenges regarding DPP 
deployment need to be acknowledged. One of the most prominent 
challenges concerns insufficient willingness to share product life cycle 
data by value chain actors’ (Bergeret al., 2023a, 2023c). This may be 
explained by perceived intellectual property rights concerns, loss of busi-
ness integrity and reputation, competitive disadvantages, or lack of data 
sharing incentives (Berger et al., 2023c). Some of those barriers could be 
overcome by selecting suitable digital technologies or machine learning 
approaches that enable confidentiality-preserving data exchange (Berger 
et al., 2023a). Furthermore, upcoming data spaces and ecosystems (e.g., 
Catena-X (2023) and  Gaia-X  (2023)) offer potential infrastructure to 
share data in a “trustworthy” environment. 

7.5 Conclusion 

The nexus between digital technologies, circularity, and sustainability is a 
fertile ground for innovation, offering both transformative opportunities 
and significant challenges. As one delves into this complex relationship, it 
is essential to recognise the multifaceted roles that technologies like AI, 
Big Data analytics, IoT, and blockchain can play in this arena. 

AI and Big Data analytics have emerged as critical drivers in the 
realm of sustainable development. These technologies facilitate the anal-
ysis of large datasets to uncover patterns and insights that can lead to 
more efficient resource use. For example, in the realm of waste manage-
ment, AI algorithms can predict resource and energy consumption as 
well as waste generation of production processes, enabling companies to 
increase their environmental performance significantly. Big Data analytics 
aid in designing products for longevity and recyclability, consistent with 
the principles of sustainability and circularity. IoT has revolutionised the 
way resources, processes, and machines are monitored and managed. By 
equipping objects with sensors and connecting them through networks, 
resource flows can be tracked in real-time. This visibility is crucial in iden-
tifying inefficiencies and leaks in systems. The data generated by IoT 
devices support decision-making processes that prioritise sustainability 
and circularity, enabling a more responsive and responsible approach to
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SPM. Blockchain’s contribution to the circular economy and sustainability 
is predominantly in enhancing transparency and traceability. This ability 
to create secure and immutable records makes it ideal for tracking the 
life cycle of products. In the context of recycling, blockchain can trace 
the journey of materials from production to end-of-life, ensuring that 
materials are responsibly sourced and recycled. This level of traceability is 
vital in building trust in circular economy practices and promoting more 
sustainable consumption patterns. 

While the potential for sustainability and circularity of these digital 
technologies is immense, it is important to acknowledge and address 
the challenges they pose. Concerns around data privacy, cybersecurity, 
and ethical implications of AI decision-making are paramount (Ashok 
et al., 2022). Furthermore, the environmental impact of the technolo-
gies themselves (Schöggl et al., 2023; Bohnsack et al. 2021), such as the 
energy demands of data centres and the generation of e-waste, must be 
considered. Addressing these challenges will require a coordinated effort 
from different actors including corporate actors, innovators, policymakers, 
and civil society to ensure that the digital transformation aligns with 
sustainable and ethical principles. 

The future of digital technologies in sustainability seems promising, 
with advancements enabling more efficient and autonomous systems for 
SPM. Innovations in blockchain could provide even greater transparency 
in supply chains (Kouhizadeh et al., 2021), facilitating the circular move-
ment of materials. Advancements in IoT technology could lead to smarter 
production and consumption networks where resource flows are opti-
mised for minimal environmental impact (Ren et al., 2019). Future 
research could address empirically whether the potential benefits of digital 
technologies for sustainability and circularity, which are often derived 
from case studies, really materialise in business practice. Additionally, 
it could be analysed how these digital technologies can enable radical 
sustainability strategies aiming for net zero environmental impacts in 
practice. Finally, future research could address the implementation of 
digital technologies and their potential for enabling radical sustainability 
solutions. 

In summary, this chapter underscores the transformative potential of 
digital technologies in advancing the circular economy and sustainability. 
The future of sustainability in the digital age is not just about the tech-
nologies employed but how they are used responsibly and inclusively. 
Embracing these technologies while addressing their inherent challenges



138 R. J. BAUMGARTNER ET AL.

is pivotal in our common journey towards a more sustainable and circular 
world. 
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