
Machine Learning for 
Everyone

This article in other languages: Russian (original)

Machine Learning is like sex in high school. Everyone is talking about 
it, a few know what to do, and only your teacher is doing it. If you 
ever tried to read articles about machine learning on the Internet, 

vasЁk.com



most likely you stumbled upon two types of them: thick academic 
trilogies filled with theorems (I couldn’t even get through half of one) 
or fishy fairytales about artificial intelligence, data-science magic, and 
jobs of the future.

I decided to write a post I’ve been wishing existed for a long time. A 
simple introduction for those who always wanted to understand 
machine learning. Only real-world problems, practical solutions, 
simple language, and no high-level theorems. One and for everyone. 
Whether you are a programmer or a manager.

Let's roll.

add a comment here



The map of the machine learning 
world

Part Ͽ. Classical Machine Learning
The first methods came from pure statistics in the 'ЃϾs. They solved 
formal math tasks — searching for patterns in numbers, evaluating 
the proximity of data points, and calculating vectors' directions.

Nowadays, half of the Internet is working on these algorithms. When 
you see a list of articles to "read next" or your bank blocks your card 



at random gas station in the middle of nowhere, most likely it's the 
work of one of those little guys.

Big tech companies are huge fans of neural networks. Obviously. For 
them, Ѐ% accuracy is an additional Ѐ billion in revenue. But when you 
are small, it doesn't make sense. I heard stories of the teams spending 
a year on a new recommendation algorithm for their e-commerce 
website, before discovering that 99% of traffic came from search 
engines. Their algorithms were useless. Most users didn't even open 
the main page.

Despite the popularity, classical approaches are so natural that you 
could easily explain them to a toddler. They are like basic arithmetic 
— we use it every day, without even thinking.

[collapse all] [show all] Ѐ comments 

Ͽ.Ͽ Supervised Learning
Classical machine learning is often divided into two categories – 

Supervised and Unsupervised Learning.



In the first case, the machine has a "supervisor" or a "teacher" who 
gives the machine all the answers, like whether it's a cat in the 
picture or a dog. The teacher has already divided (labeled) the data 
into cats and dogs, and the machine is using these examples to learn. 
One by one. Dog by cat.

Unsupervised learning means the machine is left on its own with a 
pile of animal photos and a task to find out who's who. Data is not 
labeled, there's no teacher, the machine is trying to find any patterns 
on its own. We'll talk about these methods below.

Clearly, the machine will learn faster with a teacher, so it's more 
commonly used in real-life tasks. There are two types of such tasks: 

classification – an object's category prediction, and 
regression – prediction of a specific point on a numeric 
axis.

add a comment here

Classification



"Splits objects based at one of the attributes known beforehand. 

Separate socks by based on color, documents based on language, music 

by genre"

Today used for:
– Spam filtering
– Language detection
– A search of similar documents
– Sentiment analysis
– Recognition of handwritten characters and numbers
– Fraud detection

Popular algorithms: Naive Bayes, Decision Tree, Logistic Regression, 
K-Nearest Neighbours, Support Vector Machine

From here onward you can comment with additional information for 
these sections. Feel free to write your examples of tasks. Everything 
is written here based on my own subjective experience.

add a comment here



Regression is basically classification where we forecast a number 
instead of category. Examples are car price by its mileage, traffic by 
time of the day, demand volume by growth of the company etc. 
Regression is perfect when something depends on time.

Everyone who works with finance and analysis loves regression. It's 
even built-in to Excel. And it's super smooth inside — the machine 
simply tries to draw a line that indicates average correlation. Though, 
unlike a person with a pen and a whiteboard, machine does so with 
mathematical accuracy, calculating the average interval to every dot.

When the line is straight — it's a linear regression, when it's curved – 
polynomial. These are two major types of regression. The other ones 
are more exotic. Logistic regression is a black sheep in the flock. 
Don't let it trick you, as it's a classification method, not regression.

It's okay to mess with regression and classification, though. Many 
classifiers turn into regression after some tuning. We can not only 
define the class of the object but memorize how close it is. Here 
comes a regression.

If you want to get deeper into this, check these series: Machine 
Learning for Humans. I really love and recommend it!

add a comment here



Ͽ.Ѐ Unsupervised learning
Unsupervised was invented a bit later, in the '9Ͼs. It is used less 
often, but sometimes we simply have no choice.

Labeled data is luxury. But what if I want to create, let's say, a bus 
classifier? Should I manually take photos of million fucking buses on 
the streets and label each of them? No way, that will take a lifetime, 
and I still have so many games not played on my Steam account.

There's a little hope for capitalism in this case. Thanks to social 
stratification, we have millions of cheap workers and services like 
Mechanical Turk who are ready to complete your task for $Ͼ.ϾЃ. And 
that's how things usually get done here.

Or you can try to use unsupervised learning. But I can't remember 
any good practical application for it, though. It's usually useful for 
exploratory data analysis but not as the main algorithm. Specially 
trained meatbag with Oxford degree feeds the machine with a ton of 
garbage and watches it. Are there any clusters? No. Any visible 
relations? No. Well, continue then. You wanted to work in data 
science, right?

add a comment here

Clustering



"Divides objects based on unknown features. Machine chooses the best 

way"

Nowadays used:

• For market segmentation (types of customers, loyalty)
• To merge close points on a map
• For image compression
• To analyze and label new data
• To detect abnormal behavior 

Popular algorithms: K-means_clustering, Mean-Shift, DBSCAN

add a comment here

Clustering is a classification with no predefined classes. It’s like 
dividing socks by color when you don't remember all the colors you 
have. Clustering algorithm trying to find similar (by some features) 
objects and merge them in a cluster. Those who have lots of similar 
features are joined in one class. With some algorithms, you even can 
specify the exact number of clusters you want.

An excellent example of clustering — markers on web maps. When 
you're looking for all vegan restaurants around, the clustering engine 
groups them to blobs with a number. Otherwise, your browser would 
freeze, trying to draw all three million vegan restaurants in that 
hipster downtown.

Apple Photos and Google Photos use more complex clustering. They're 
looking for faces in photos to create albums of your friends. The app 



doesn't know how many friends you have and how they look, but it's 
trying to find the common facial features. Typical clustering.

Another popular issue is image compression. When saving the image 
to PNG you can set the palette, let's say, to ЁЀ colors. It means 
clustering will find all the "reddish" pixels, calculate the "average 
red" and set it for all the red pixels. Fewer colors — lower file size — 
profit!

However, you may have problems with colors like Cyan◼︎-like colors. 
Is it green or blue? Here comes the K-Means algorithm.

It randomly sets ЁЀ color dots in the palette. Now, those are 
centroids. The remaining points are marked as assigned to the 
nearest centroid. Thus, we get kind of galaxies around these ЁЀ 
colors. Then we're moving the centroid to the center of its galaxy and 
repeat that until centroids stop moving.

All done. Clusters defined, stable, and there are exactly ЁЀ of them. 
Here is a more real-world explanation:



Searching for the centroids is convenient. Though, in real life clusters 
not always circles. Let's imagine you're a geologist. And you need to 
find some similar minerals on the map. In that case, the clusters can 
be weirdly shaped and even nested. Also, you don't even know how 
many of them to expect. ϿϾ? ϿϾϾ?

K-means does not fit here, but DBSCAN can be helpful. Let's say, our 
dots are people at the town square. Find any three people standing 
close to each other and ask them to hold hands. Then, tell them to 
start grabbing hands of those neighbors they can reach. And so on, 
and so on until no one else can take anyone's hand. That's our first 
cluster. Repeat the process until everyone is clustered. Done.

A nice bonus: a person who has no one to hold hands with — is an 
anomaly.

It all looks cool in motion:

Interested in clustering? Check out this piece The Ѓ Clustering 
Algorithms Data Scientists Need to Know

Just like classification, clustering could be used to detect anomalies. 
User behaves abnormally after signing up? Let the machine ban him 
temporarily and create a ticket for the support to check it. Maybe it's 
a bot. We don't even need to know what "normal behavior" is, we just 



upload all user actions to our model and let the machine decide if it's 
a "typical" user or not.

This approach doesn't work that well compared to the classification 
one, but it never hurts to try.

add a comment here

Dimensionality Reduction 
(Generalization)

"Assembles specific features into more high-level ones"

Nowadays is used for:

• Recommender systems (★)
• Beautiful visualizations
• Topic modeling and similar document search
• Fake image analysis



• Risk management

Popular algorithms: Principal Component Analysis (PCA), Singular 
Value Decomposition (SVD), Latent Dirichlet allocation (LDA), Latent 
Semantic Analysis (LSA, pLSA, GLSA), t-SNE (for visualization)

add a comment here

This includes all the methods to analyze shopping carts, automate 
marketing strategy, and other event-related tasks. When you have a 
sequence of something and want to find patterns in it — try these 
thingys.

Say, a customer takes a six-pack of beers and goes to the checkout. 
Should we place peanuts on the way? How often do people buy them 
together? Yes, it probably works for beer and peanuts, but what other 
sequences can we predict? Can a small change in the arrangement of 
goods lead to a significant increase in profits?



Same goes for e-commerce. The task is even more interesting there — 
what is the customer going to buy next time?

No idea why rule-learning seems to be the least elaborated upon 
category of machine learning. Classical methods are based on a head-
on look through all the bought goods using trees or sets. Algorithms 
can only search for patterns, but cannot generalize or reproduce 
those on new examples.

In the real world, every big retailer builds their own proprietary 
solution, so nooo revolutions here for you. The highest level of tech 
here — recommender systems. Though, I may be not aware of a 
breakthrough in the area. Let me know in the comments if you have 
something to share.

[collapse all] [show all] Ё comments 

Part Ѐ. Reinforcement Learning



Finally, we get to something looks like real artificial intelligence. In 
lots of articles reinforcement learning is placed somewhere in 
between of supervised and unsupervised learning. They have nothing 
in common! Is this because of the name?

Reinforcement learning is used in cases when your problem is not 
related to data at all, but you have an environment to live in. Like a 
video game world or a city for self-driving car.

…

Neural network plays Mario

Knowledge of all the road rules in the world will not teach the 
autopilot how to drive on the roads. Regardless of how much data we 
collect, we still can't foresee all the possible situations. This is why its 

goal is to minimize error, not to predict all the moves.

Surviving in an environment is a core idea of reinforcement learning. 
Throw poor little robot into real life, punish it for errors and reward 
it for right deeds. Same way we teach our kids, right?

More effective way here — to build a virtual city and let self-driving 
car to learn all its tricks there first. That's exactly how we train auto-



pilots right now. Create a virtual city based on a real map, populate 
with pedestrians and let the car learn to kill as few people as 
possible. When the robot is reasonably confident in this artificial 
GTA, it's freed to test in the real streets. Fun!

There may be two different approaches — Model-Based and 
Model-Free.

Model-Based means that car needs to memorize a map or its parts. 
That's a pretty outdated approach since it's impossible for the poor 
self-driving car to memorize the whole planet.

In Model-Free learning, the car doesn't memorize every movement 
but tries to generalize situations and act rationally while obtaining a 
maximum reward.

Remember the news about AI beating a top player at the game of Go? 
Despite shortly before this it being proved that the number of 
combinations in this game is greater than the number of atoms in the 
universe.

This means the machine could not remember all the combinations and 
thereby win Go (as it did chess). At each turn, it simply chose the best 
move for each situation, and it did well enough to outplay a human 
meatbag.

This approach is a core concept behind Q-learning and its derivatives 
(SARSA & DQN). 'Q' in the name stands for "Quality" as a robot learns 
to perform the most "qualitative" action in each situation and all the 
situations are memorized as a simple markovian process.



Such a machine can test billions of situations in a virtual 
environment, remembering which solutions led to greater reward. 
But how can it distinguish previously seen situations from a 
completely new one? If a self-driving car is at a road crossing and the 
traffic light turns green — does it mean it can go now? What if there's 
an ambulance rushing through a street nearby?

The answer today is "no one knows". There's no easy answer. 
Researchers are constantly searching for it but meanwhile only 
finding workarounds. Some would hardcode all the situations 
manually that let them solve exceptional cases, like the trolley 
problem. Others would go deep and let neural networks do the job of 
figuring it out. This led us to the evolution of Q-learning called Deep 
Q-Network (DQN). But they are not a silver bullet either.

Reinforcement Learning for an average person would look like a real 

artificial intelligence. Because it makes you think wow, this machine is 

making decisions in real life situations! This topic is hyped right now, 
it's advancing with incredible pace and intersecting with a neural 
network to clean your floor more accurately. Amazing world of 
technologies!

Off-topic. When I was a student, genetic algorithms (link has cool 
visualization) were really popular. This is about throwing a bunch of 
robots into a single environment and making them try reaching the 



goal until they die. Then we pick the best ones, cross them, mutate 
some genes and rerun the simulation. After a few milliard years, we 
will get an intelligent creature. Probably. Evolution at its finest.

Genetic algorithms are considered as part of reinforcement learning 
and they have the most important feature proved by decade-long 
practice: no one gives a shit about them.

Humanity still couldn't come up with a task where those would be 
more effective than other methods. But they are great for student 
experiments and let people get their university supervisors excited 
about "artificial intelligence" without too much labour. And youtube 
would love it as well.

add a comment here

Part Ё. Ensemble Methods



"Bunch of stupid trees learning to correct errors of each other"

Nowadays is used for:

• Everything that fits classical algorithm approaches (but 
works better)

• Search systems (★)
• Computer vision
• Object detection

Popular algorithms: Random Forest, Gradient Boosting

add a comment here

It's time for modern, grown-up methods. Ensembles and neural 
networks are two main fighters paving our path to a singularity. 
Today they are producing the most accurate results and are widely 
used in production.

However, the neural networks got all the hype today, while the words 
like "boosting" or "bagging" are scarce hipsters on TechCrunch.

Despite all the effectiveness the idea behind these is overly simple. If 
you take a bunch of inefficient algorithms and force them to correct 
each other's mistakes, the overall quality of a system will be higher 
than even the best individual algorithms.

You'll get even better results if you take the most unstable algorithms 
that are predicting completely different results on small noise in 
input data. Like Regression and Decision Trees. These algorithms are 
so sensitive to even a single outlier in input data to have models go 
mad.

In fact, this is what we need.

We can use any algorithm we know to create an ensemble. Just throw 
a bunch of classifiers, spice it up with regression and don't forget to 
measure accuracy. From my experience: don't even try a Bayes or 



kNN here. Although "dumb", they are really stable. That's boring and 
predictable. Like your ex.

Instead, there are three battle-tested methods to create ensembles.

Stacking Output of several parallel models is passed as input to the 
last one which makes a final decision. Like that girl who asks her 
girlfriends whether to meet with you in order to make the final 
decision herself.

Emphasis here on the word "different". Mixing the same algorithms 
on the same data would make no sense. The choice of algorithms is 
completely up to you. However, for final decision-making model, 
regression is usually a good choice.

Based on my experience stacking is less popular in practice, because 
two other methods are giving better accuracy.

Bagging aka Bootstrap AGGregatING. Use the same algorithm but 
train it on different subsets of original data. In the end — just average 
answers.

Data in random subsets may repeat. For example, from a set like 
"Ͽ-Ѐ-Ё" we can get subsets like "Ѐ-Ѐ-Ё", "Ͽ-Ѐ-Ѐ", "Ё-Ͽ-Ѐ" and so on. We 
use these new datasets to teach the same algorithm several times and 
then predict the final answer via simple majority voting.



The most famous example of bagging is the Random Forest algorithm, 
which is simply bagging on the decision trees (which were illustrated 
above). When you open your phone's camera app and see it drawing 
boxes around people's faces — it's probably the results of Random 
Forest work. Neural networks would be too slow to run real-time yet 
bagging is ideal given it can calculate trees on all the shaders of a 
video card or on these new fancy ML processors.

In some tasks, the ability of the Random Forest to run in parallel is 
more important than a small loss in accuracy to the boosting, for 
example. Especially in real-time processing. There is always a trade-
off.

Boosting Algorithms are trained one by one sequentially. Each 
subsequent one paying most of its attention to data points that were 
mispredicted by the previous one. Repeat until you are happy.

Same as in bagging, we use subsets of our data but this time they are 
not randomly generated. Now, in each subsample we take a part of 



the data the previous algorithm failed to process. Thus, we make a 
new algorithm learn to fix the errors of the previous one.

The main advantage here — a very high, even illegal in some 
countries precision of classification that all cool kids can envy. The 
cons were already called out — it doesn't parallelize. But it's still 
faster than neural networks. It's like a race between a dump truck 
and a racecar. The truck can do more, but if you want to go fast — 
take a car.

If you want a real example of boosting — open Facebook or Google 
and start typing in a search query. Can you hear an army of trees 
roaring and smashing together to sort results by relevancy? That's 
because they are using boosting.

Nowadays there are three popular tools for boosting, you can read a 
comparative report in CatBoost vs. LightGBM vs. XGBoost

[collapse all] [show all] Ͽ comment 

Part Ђ. Neural Networks and Deep 
Leaning



If no one has ever tried to explain neural networks to you using 
"human brain" analogies, you're happy. Tell me your secret. But first, 
let me explain it the way I like.

Any neural network is basically a collection of neurons and 

connections between them. Neuron is a function with a bunch of 
inputs and one output. Its task is to take all numbers from its input, 
perform a function on them and send the result to the output.

Here is an example of a simple but useful in real life neuron: sum up 
all numbers from the inputs and if that sum is bigger than N — give Ͽ 
as a result. Otherwise — zero.

Connections are like channels between neurons. They connect 
outputs of one neuron with the inputs of another so they can send 
digits to each other. Each connection has only one parameter — 
weight. It's like a connection strength for a signal. When the number 
ϿϾ passes through a connection with a weight Ͼ.Ѓ it turns into Ѓ.

These weights tell the neuron to respond more to one input and less 
to another. Weights are adjusted when training — that's how the 
network learns. Basically, that's all there is to it.



To prevent the network from falling into anarchy, the neurons are 
linked by layers, not randomly. Within a layer neurons are not 
connected, but they are connected to neurons of the next and previous 
layers. Data in the network goes strictly in one direction — from the 
inputs of the first layer to the outputs of the last.

If you throw in a sufficient number of layers and put the weights 
correctly, you will get the following: by applying to the input, say, the 
image of handwritten digit Ђ, black pixels activate the associated 
neurons, they activate the next layers, and so on and on, until it 
finally lights up the exit in charge of the four. The result is achieved.

When doing real-life programming nobody is writing neurons and 
connections. Instead, everything is represented as matrices and 
calculated based on matrix multiplication for better performance. My 



favourite video on this and its sequel below describe the whole 
process in an easily digestible way using the example of recognizing 
hand-written digits. Watch them if you want to figure this out.

…

A network that has multiple layers that have connections between 
every neuron is called a perceptron (MLP) and considered the 
simplest architecture for a novice. I didn't see it used for solving 
tasks in production.

After we constructed a network, our task is to assign proper ways so 
neurons will react correctly to incoming signals. Now is the time to 
remember that we have data that is samples of 'inputs' and proper 
'outputs'. We will be showing our network a drawing of the same 
digit Ђ and tell it 'adapt your weights so whenever you see this input 
your output would emit Ђ'.

To start with, all weights are assigned randomly. After we show it a 
digit it emits a random answer because the weights are not correct 
yet, and we compare how much this result differs from the right one. 
Then we start traversing network backward from outputs to inputs 
and tell every neuron 'hey, you did activate here but you did a terrible 
job and everything went south from here downwards, let's keep less 
attention to this connection and more of that one, mkay?'.

After hundreds of thousands of such cycles of 'infer-check-punish', 
there is a hope that the weights are corrected and act as intended. 
The science name for this approach is Backpropagation, or a 'method 
of backpropagating an error'. Funny thing it took twenty years to 
come up with this method. Before this we still taught neural networks 
somehow.



My second favorite vid is describing this process in depth, but it's still 
very accessible.

…

A well trained neural network can fake the work of any of the 
algorithms described in this chapter (and frequently works more 
precisely). This universality is what made them widely popular. 
Finally we have an architecture of human brain they said we just need 

to assemble lots of layers and teach them on any possible data they 
hoped. Then the first AI winter) started, then it thawed, and then 
another wave of disappointment hit.

It turned out networks with a large number of layers required 
computation power unimaginable at that time. Nowadays any gamer 
PC with geforces outperforms the datacenters of that time. So people 
didn't have any hope then to acquire computation power like that and 
neural networks were a huge bummer.

And then ten years ago deep learning rose.

There's a nice Timeline of machine learning describing the 
rollercoaster of hopes & waves of pessimism.

In ЀϾϿЀ convolutional neural networks acquired an overwhelming 
victory in ImageNet competition that made the world suddenly 

remember about methods of deep learning described in the ancient 
9Ͼs. Now we have video cards!

Differences of deep learning from classical neural networks were in 
new methods of training that could handle bigger networks. 
Nowadays only theoretics would try to divide which learning to 
consider deep and not so deep. And we, as practitioners are using 



popular 'deep' libraries like Keras, TensorFlow & PyTorch even when 
we build a mini-network with five layers. Just because it's better 
suited than all the tools that came before. And we just call them 
neural networks.

I'll tell about two main kinds nowadays.

Convolutional Neural Networks (CNN)

Convolutional neural networks are all the rage right now. They are 
used to search for objects on photos and in videos, face recognition, 
style transfer, generating and enhancing images, creating effects like 
slow-mo and improving image quality. Nowadays CNNs are used in 
all the cases that involve pictures and videos. Even in your iPhone 
several of these networks are going through your nudes to detect 
objects in those. If there is something to detect, heh.

Image above is a result produced by Detectron that was recently 
open-sourced by Facebook

A problem with images was always the difficulty of extracting 
features out of them. You can split text by sentences, lookup words' 
attributes in specialized vocabularies, etc. But images had to be 
labeled manually to teach the machine where cat ears or tails were in 



this specific image. This approach got the name 'handcrafting 
features' and used to be used almost by everyone.

There are lots of issues with the handcrafting.

First of all, if a cat had its ears down or turned away from the 
camera: you are in trouble, the neural network won't see a thing.

Secondly, try naming on the spot ϿϾ different features that 
distinguish cats from other animals. I for one couldn't do it, but when 
I see a black blob rushing past me at night — even if I only see it in 
the corner of my eye — I would definitely tell a cat from a rat. 
Because people don't look only at ear form or leg count and account 
lots of different features they don't even think about. And thus cannot 
explain it to the machine.

So it means the machine needs to learn such features on its own, 
building on top of basic lines. We'll do the following: first, we divide 
the whole image into 8x8 pixel blocks and assign to each a type of 
dominant line – either horizontal [-], vertical [|] or one of the 
diagonals [/]. It can also be that several would be highly visible — this 
happens and we are not always absolutely confident.

Output would be several tables of sticks that are in fact the simplest 
features representing objects edges on the image. They are images on 
their own but built out of sticks. So we can once again take a block of 
8x8 and see how they match together. And again and again…

This operation is called convolution, which gave the name for the 
method. Convolution can be represented as a layer of a neural 
network, because each neuron can act as any function.



When we feed our neural network with lots of photos of cats it 
automatically assigns bigger weights to those combinations of sticks 
it saw the most frequently. It doesn't care whether it was a straight 
line of a cat's back or a geometrically complicated object like a cat's 
face, something will be highly activating.

As the output, we would put a simple perceptron which will look at 
the most activated combinations and based on that differentiate cats 
from dogs.

The beauty of this idea is that we have a neural net that searches for 
the most distinctive features of the objects on its own. We don't need 
to pick them manually. We can feed it any amount of images of any 
object just by googling billions of images with it and our net will 
create feature maps from sticks and learn to differentiate any object 
on its own.

For this I even have a handy unfunny joke:



Give your neural net a fish and it will be able to detect 

fish for the rest of its life. Give your neural net a 

fishing rod and it will be able to detect fishing rods for 

the rest of its life…

Recurrent Neural Networks (RNN)

The second most popular architecture today. Recurrent networks 
gave us useful things like neural machine translation (here is my post 
about it), speech recognition and voice synthesis in smart assistants. 
RNNs are the best for sequential data like voice, text or music.

Remember Microsoft Sam, the old-school speech synthesizer from 
Windows XP? That funny guy builds words letter by letter, trying to 
glue them up together. Now, look at Amazon Alexa or Assistant from 
Google. They don't only say the words clearly, they even place the 
right accents!

…

Neural Net is trying to speak

All because modern voice assistants are trained to speak not letter by 
letter, but on whole phrases at once. We can take a bunch of voiced 
texts and train a neural network to generate an audio-sequence 
closest to the original speech.

In other words, we use text as input and its audio as the desired 
output. We ask a neural network to generate some audio for the given 



text, then compare it with the original, correct errors and try to get 
as close as possible to ideal.

Sounds like a classical learning process. Even a perceptron is suitable 
for this. But how should we define its outputs? Firing one particular 
output for each possible phrase is not an option — obviously.

Here we'll be helped by the fact that text, speech or music are 
sequences. They consist of consecutive units like syllables. They all 
sound unique but depend on previous ones. Lose this connection and 
you get dubstep.

We can train the perceptron to generate these unique sounds, but 
how will it remember previous answers? So the idea is to add 
memory to each neuron and use it as an additional input on the next 
run. A neuron could make a note for itself - hey, we had a vowel here, 
the next sound should sound higher (it's a very simplified example).

That's how recurrent networks appeared.

This approach had one huge problem - when all neurons remembered 
their past results, the number of connections in the network became 
so huge that it was technically impossible to adjust all the weights.

When a neural network can't forget, it can't learn new things (people 
have the same flaw).



The first decision was simple: limit the neuron memory. Let's say, to 
memorize no more than Ѓ recent results. But it broke the whole idea.

A much better approach came later: to use special cells, similar to 
computer memory. Each cell can record a number, read it or reset it. 
They were called long and short-term memory (LSTM) cells.

Now, when a neuron needs to set a reminder, it puts a flag in that 
cell. Like "it was a consonant in a word, next time use different 
pronunciation rules". When the flag is no longer needed, the cells are 
reset, leaving only the “long-term” connections of the classical 
perceptron. In other words, the network is trained not only to learn 
weights but also to set these reminders.

Simple, but it works!

…

CNN + RNN = Fake Obama

You can take speech samples from anywhere. BuzzFeed, for example, 
took Obama's speeches and trained a neural network to imitate his 
voice. As you see, audio synthesis is already a simple task. Video still 
has issues, but it's a question of time.



There are many more network architectures in the wild. I recommend 
a good article called Neural Network Zoo, where almost all types of 
neural networks are collected and briefly explained.

add a comment here



The End: when the war with the 
machines?
The main problem here is that the question "when will the machines 

become smarter than us and enslave everyone?" is initially wrong. 
There are too many hidden conditions in it.

We say "become smarter than us" like we mean that there is a 
certain unified scale of intelligence. The top of which is a 
human, dogs are a bit lower, and stupid pigeons are hanging around 
at the very bottom.

That's wrong.

If this were the case, every human must beat animals in everything 
but it's not true. The average squirrel can remember a thousand 
hidden places with nuts — I can't even remember where are my keys.

So intelligence is a set of different skills, not a single measurable 
value? Or is remembering nuts stashed locations not included in 
intelligence?

An even more interesting question for me - why do we believe 
that the human brain possibilities are limited? There are 
many popular graphs on the Internet, where the technological 
progress is drawn as an exponent and the human possibilities are 
constant. But is it?

Ok, multiply ϿЄ8Ͼ by 9ЃϾ right now in your mind. I know you won't 
even try, lazy bastards. But give you a calculator — you'll do it in two 
seconds. Does this mean that the calculator just expanded the 
capabilities of your brain?

If yes, can I continue to expand them with other machines? Like, use 
notes in my phone to not to remember a shitload of data? Oh, seems 



like I'm doing it right now. I'm expanding the capabilities of my brain 
with the machines.

Think about it. Thanks for reading.

add a comment here
�


