7/18/24, 2:05 PM Jupyter Notebook Viewer

DL-Cheat-Codes (/github/nikitaprasad21/DL-Cheat-Codes/tree/main)
/ RNN-Models (/github/nikitaprasad21/DL-Cheat-Codes/tree/main/RNN-Models)

Understanding RNN Variants

LSTM Networks

LSTMs (Long Short Term Memory networks) are a type of recurrent neural network (RNN)
architecture designed to address the vanishing gradient problem in traditional RNNs.

Further, they are capable of learning and remembering long-term dependencies in sequential
data.

Architecture:

LSTMs consist of memory cells and gating mechanisms, including the forget gate, input gate, and

output gate.

These gates control the flow of information through the network, allowing LSTMs to selectively

remember or forget information over time.

LSTM has three different gates forget gate, input gate and output gate. Each of them is discussed

below:

¢ Memory/Cell State: The cell state stores information over time and is regulated by the
gating mechanisms.

* Forget Gate: Determines which information to discard from the cell state.

* Input Gate: Decides which new information to update and store in the cell state.

* Output Gate: Controls which information to output from the cell state.

https://nbviewer.org/github/nikitaprasad21/DL-Cheat-Codes/blob/main/RNN-Models/Istm_gru.ipynb 1/9

7/18/24, 2:05 PM

Jupyter Notebook Viewer

LONG SHORT-TERM MEMORY
NEURAL NETWORKS

Updated cell state to help

LSTM Recurrent Unit cctermine new hidden state

Cell state

Hidden state

for cell
up

Forget Input
gate gate

The compact forms of the equations for the forward pass of an LSTM cell :

fi
iy
M
Ci
Ci
hy

,J|: JrI,- + Ufht 1+ bf}
r,l“’rzm.! + Uihyy + b :]
= JQIZH,,..J'.L +Ushi_y1 + b,)
g.(Wezy + Uhy_1 + b)
e +i @0y

:f.!

=0y @oy(c)

where the initial values are ¢ 0 = 0 and A 0 = 0 and the operator ® denotes the Hadamard

product (element-wise product). The subscript t indexes the time step.

Activation functions:

o g : sigmoid function.

o ¢ : hyperbolic tangent function.

o h : hyperbolic tangent function or, as the LSTM Architecture suggests,

ch(x)=x

https://nbviewer.org/github/nikitaprasad21/DL-Cheat-Codes/blob/main/RNN-Models/Istm_gru.ipynb

2/9

7/18/24, 2:05 PM Jupyter Notebook Viewer

Training and Backpropagation:

LSTMs are trained using gradient-based optimization algorithms like stochastic gradient descent
(SGD).

The backpropagation algorithm is used to compute gradients and update the model's

parameters during training.

Vanishing Gradient Problem:

LSTMs were designed to mitigate the vanishing gradient problem, which occurs when gradients
become very small during backpropagation in deep networks. By introducing gating
mechanisms, LSTMs can preserve gradient flow over long sequences.

In [1]: dimport tensorflow as tf
from tensorflow.keras.datasets import imdb
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Embedding, Dense, LSTM, GRU

In [5]: # Load the IMDb dataset
(train_input,train_target), (test_input,test_target) = imdb.load_data(num_words=10000)

Pad sequences to have the same Llength
train_input = pad_sequences(train_input, maxlen=100)
test_input = pad_sequences(test_input, maxlen=100)

In [6]: # Define the LSTM model
model = Sequential([
Embedding (10000, 32, input_length=100),
LSTM(5, return_sequences=False),
Dense(1l, activation='sigmoid")

D

model.summary ()

Model: "sequential 1"

Layer (type) Output Shape Param #
“embedding_1 (Embedding) (Nome, 100, 32) 320000
Istm_1 (LSTM) (None, 5) 760
dense_1 (Dense) (None, 1) 6

Total params: 320766 (1.22 MB)
Trainable params: 320766 (1.22 MB)
Non-trainable params: @ (©.00 Byte)

https://nbviewer.org/github/nikitaprasad21/DL-Cheat-Codes/blob/main/RNN-Models/Istm_gru.ipynb 3/9

7/18/24, 2:05 PM

In [7]:

In [8]:

Jupyter Notebook Viewer

Compile the model
model.compile(optimizer="adam', loss='binary_crossentropy', metrics=['accuracy'])

Train the model

history = model.fit(train_input, train_target, epochs=5, batch_size=32, validation_dat:

Epoch 1/5

782/782 [==============================]| - 285 34ms/step - loss: 0.4638 - accuracy:
7818 - val loss: 0.3677 - val_accuracy: 0.8404

Epoch 2/5

782/782 [==============================] - 235 30ms/step - loss: 0.2816 - accuracy:
8890 - val loss: ©.3555 - val_accuracy: 0.8460

Epoch 3/5

782/782 [==============================] - 255 32ms/step - loss: ©.2076 - accuracy:
9224 - val_loss: ©.3752 - val_accuracy: 0.8445

Epoch 4/5

782/782 [==============================] - 26S 34ms/step - loss: 0.1573 - accuracy:
9443 - val loss: 0.4489 - val_accuracy: 0.8392

Epoch 5/5

782/782 [==============================] - 255 32ms/step - loss: 0.1203 - accuracy:

9609 - val loss: 0.5063 - val _accuracy: 0.8314

Hyperparameters:

Tuning hyperparameters such as the number of hidden units, learning rate, and batch size can
significantly impact the performance of LSTM models. Cross-validation and hyperparameter
search techniques are commonly used to find optimal settings.

1. Regularization: Techniques like dropout and weight regularization can be applied to
prevent overfitting in LSTM models and improve generalization performance.

2. Optimization Techniques: Advanced optimization techniques like adaptive learning rate
methods (e.g., Adam, RMSProp) and second-order optimization methods can be used to
accelerate training and improve convergence in LSTM models.

3. Attention Mechanisms: Attention mechanisms can be incorporated into LSTM models to
selectively focus on different parts of the input sequence, improving their ability to capture
relevant information and ignore irrelevant noise.

Applications:

LSTMs are widely used in various applications, including natural language processing (NLP),
machine translation ,sentiment analysis, speech recognition, time series analysis, and sequence
prediction tasks.

Advanced Architectures:

Variants of LSTMs, such as bidirectional LSTM, stacked LSTMs, hierarchical LSTMs, and
convolutional LSTMs, have been developed to address specific challenges and improve

performance on various tasks.

https://nbviewer.org/github/nikitaprasad21/DL-Cheat-Codes/blob/main/RNN-Models/Istm_gru.ipynb

4/9

7/18/24, 2:05 PM Jupyter Notebook Viewer

GRU Networks:

Gated Recurrent Units (GRUs) are a type of recurrent neural network (RNN) architecture similar to
Long Short-Term Memory (LSTM) networks. They are designed to address the vanishing gradient

problem and capture long-term dependencies in sequential data.

Architecture:

GRUs consist of update gates and reset gates, which control the flow of information through the
network. They have fewer parameters compared to LSTMs, making them computationally more
efficient.

GRU has two different gates reset gate, and update gate. Each of them is discussed below:

* Reset Gate: Controls how much of the past state to forget when computing the current
state.
¢ Update Gate: Determines how much of the past information to retain and how much of the

new information to incorporate.

GATED RECURRENT UNIT
_R

Update
gate

https://nbviewer.org/github/nikitaprasad21/DL-Cheat-Codes/blob/main/RNN-Models/Istm_gru.ipynb 5/9

7/18/24, 2:05 PM Jupyter Notebook Viewer

it = O (Wz : [ht—lymt])
rt =0 (Wr : [ht—hﬂ?t])
hy = tanh (W - [ry « hy_1, 24])

ht:(l—Zt)*ht_l—FZt*;Lt

Training and Backpropagation:

GRUs are trained using gradient-based optimization algorithms like stochastic gradient descent
(SGD). Backpropagation through time (BPTT) is used to compute gradients and update the
model's parameters during training.

Vanishing Gradient Problem:

Similar to LSTMs, GRUs are designed to mitigate the vanishing gradient problem in traditional
RNNs. The gating mechanisms allow them to preserve gradient flow over long sequences and
capture dependencies effectively.

In [9]: # Define the GRU model
model 1 = Sequential(]
Embedding (10000, 32, input_length=100),
GRU(5, return_sequences=False),
Dense(1, activation='sigmoid")

D

model.summary ()

Model: "sequential 1"

Layer (type) Output Shape Param #
“embedding 1 (Enbedding) (Nome, 100, 32) 320000
l1stm_1 (LSTM) (None, 5) 760
dense_1 (Dense) (None, 1) 6

Total params: 320766 (1.22 MB)
Trainable params: 320766 (1.22 MB)
Non-trainable params: 0 (0.00 Byte)

In [10]: # Compile the model
model_1.compile(optimizer="adam', loss='binary_crossentropy', metrics=['accuracy'])

https://nbviewer.org/github/nikitaprasad21/DL-Cheat-Codes/blob/main/RNN-Models/Istm_gru.ipynb 6/9

7/18/24, 2:05 PM

In [11]:

Jupyter Notebook Viewer

Train the model

history_1 = model_1.fit(train_input, train_target, epochs=5, batch_size=32, validation_

Epoch 1/5

782/782 [==============================] - 30s 36ms/step - loss: 0.5047 - accuracy: 0.
7524 - val loss: 0.4034 - val_accuracy: 0.8291

Epoch 2/5

782/782 [==============================] - 27S 35ms/step - loss: 0.3204 - accuracy:
8708 - val_loss: 0.3662 - val_accuracy: 0.8441

Epoch 3/5

782/782 [==============================] - 275 35ms/step - loss: 0.2477 - accuracy:
9056 - val loss: 0.3657 - val_accuracy: 0.8452

Epoch 4/5

782/782 [==============================] - 26S 33ms/step - loss: 0.1947 - accuracy:
9305 - val loss: 0.4209 - val_accuracy: 0.8321

Epoch 5/5

782/782 [==============================] - 26S 33ms/step - loss: 0.1530 - accuracy:

9467 - val loss: 0.4318 - val_accuracy: 0.8372

Slightly better result on Test Dataset of GRU but mostly comparable.

Hyperparameters:

Tuning hyperparameters such as the number of hidden units, learning rate, and batch size can
significantly impact the performance of GRU models.

Cross-validation and hyperparameter search techniques are commonly used to find optimal
settings.

1. Regularization: Techniques like dropout and weight regularization can be applied to

prevent overfitting in GRU models and improve generalization performance.

2. Optimization Techniques: Advanced optimization techniques like adaptive learning rate
methods (e.g., Adam, RMSProp) and second-order optimization methods can be used to
accelerate training and improve convergence in GRU models.

3. Attention Mechanisms: Attention mechanisms can be incorporated into GRU models to
selectively focus on different parts of the input sequence, improving their ability to capture

relevant information and ignore irrelevant noise.

Advanced Architectures:

Variants of GRUs, such as stacked GRUs, bidirectional GRUs, hierarchical GRUs, and convolutional
GRUs, have been developed to address specific challenges and improve performance on various

tasks.

Let's compare Recurrent Neural Networks (RNNs), Long Short-
Term Memory (LSTM) networks, and Gated Recurrent Units

https://nbviewer.org/github/nikitaprasad21/DL-Cheat-Codes/blob/main/RNN-Models/Istm_gru.ipynb

7/9

7/18/24, 2:05 PM Jupyter Notebook Viewer

(GRUs) across various aspects:

1. Architecture:

e **RNN**: Basic RNNs have a simple architecture where each neuron's output is fed back into
the network at the next time step. They suffer from the vanishing gradient problem and
struggle to capture long-range dependencies.

e **LSTM**: LSTMs have a more complex architecture with memory cells and gating
mechanisms (forget gate, input gate, output gate). These gates control the flow of
information, allowing LSTMs to selectively remember or forget information over time and
capture long-term dependencies effectively.

e **GRU**: GRUs also have memory cells and gating mechanisms, but they are simpler
compared to LSTMs. GRUs have two gates (update gate and reset gate) instead of three in
LSTMs, making them computationally more efficient.

2. Gating Mechanisms:

* **RNN: Basic RNNs do not have gating mechanisms to control the flow of information. They
suffer from the vanishing gradient problem, which limits their ability to capture long-range
dependencies.

® LSTM: LSTMs have three gating mechanisms (forget gate, input gate, output gate) that
regulate the flow of information through the network. This allows LSTMs to preserve
gradient flow over long sequences and capture dependencies effectively.

* GRU: GRUs have two gating mechanisms (update gate and reset gate) that control the flow
of information. They are simpler compared to LSTMs but still capable of capturing long-term
dependencies.

3. Memory Cells:

* RNN: Basic RNNs do not have specialized memory cells to store information over time.

® LSTM: LSTMs have memory cells called Cell and Hidden State that store information over
time and are regulated by the gating mechanisms.

* GRU: GRUs also have memory cell, but they are simpler compared to LSTMs.

\ ht_) Forget gate \ ht)

(%) Input gate Output gate . Reset gate Update gate
® e ®

RNN LSTM GRU
4. Training and Performance:

* RNN: Basic RNNs suffer from the vanishing gradient problem, which makes training difficult,
especially on long sequences. They are less effective at capturing long-term dependencies.

https://nbviewer.org/github/nikitaprasad21/DL-Cheat-Codes/blob/main/RNN-Models/Istm_gru.ipynb 8/9

7/18/24, 2:05 PM Jupyter Notebook Viewer
* LSTM: LSTMs are effective at capturing long-term dependencies and mitigating the
vanishing gradient problem. They are widely used in various applications, including natural
language processing and time series analysis.
® GRU: GRUs are simpler and computationally more efficient compared to LSTMs. They are
also effective at capturing long-term dependencies but have fewer parameters, making them
faster to train and potentially more suitable for applications with limited computational

resources.
5. Complexity and Efficiency:

* RNN: Basic RNNs have a simple architecture but struggle with capturing long-term
dependencies.

® LSTM: LSTMs have a more complex architecture with additional gating mechanisms and
memory cells, making them more powerful but also more computationally expensive.

* GRU: GRUs have a simpler architecture compared to LSTMs, with fewer parameters and
computations. They offer a good balance between complexity and efficiency.

In summary, while all three types of recurrent architectures have their strengths and weaknesses,
LSTMs and GRUs are more advanced and effective at capturing long-term dependencies
compared to basic RNNs.

LSTMs are more powerful and versatile but come with higher computational costs, while GRUs

offer a simpler and more efficient alternative with comparable performance in many cases.

https://nbviewer.org/github/nikitaprasad21/DL-Cheat-Codes/blob/main/RNN-Models/Istm_gru.ipynb 9/9

