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Glossary:

Al Artificial Intelligence
AMM Automated Market Maker
B2C Business-to-Consumer
BIS Bank for International Settlements
cac Consumer-to-Consumer
CvaR Compounded Value-at-Risk
DApp Decentralised Application
DAO Decentralised Autonomous Organisation
DeFi Decentralised Finance
DEX Decentralised Exchange
DPos Delegated Proof-of-Stake
ECOSOC United Nations Economic and Social Council
EU European Union
EIC European Innovation Council
FHE Fully Homomorphic Encryption
fhEVM Fully Homomorphic Ethereum Virtual Machine
G20 Group of 20
GAFAM Google, Apple, Facebook, Amazon, Microsoft
GDPR General Data Protection Regulation
GenAl Generative Artificial intelligence
IEC International Electrotechnical Commission
IGF Internet Governance Forum
ISO International Standards Organisation
ITU International Telecommunications Union
LLM Large Language Model
LP Liquidity Provider
MPC Multiparty Computation
NLP Natural Language Processing
PBFT Practical Byzantine-Fault Tolerance
PHE Partial Homomorphic Encryption
PosS Proof-of-Stake
Pow Proof-of-Work
SBT Soulbound Token
SDG Sustainable Development Goals
SSli Self-Sovereign Identity
UN United Nations
UNESCO United Nations Educational, Scientific and Cultural Organisation
VaR Value-at-Risk
VCs Verifiable Credentials
zk-SNARK Zero-Knowledge Succinct Non-Argument of Knowledge
Zk-STARK

Zero-Knowledge Scalable Transparent Argument of Knowledge




1. Introduction

In the digital age, data has emerged as the cornerstone for innovation. However, this surge in
data-driven innovation is not without its challenges. Concerns about user confidentiality, the
potential misuse of personal information, and the ever-present risk of breaches are
increasingly being highlighted in global discourse (Gelhaar, et al. 2021; Greenwood, S. 2016).
Additionally, our interconnected digital ecosystems have exacerbated the rise of
misinformation and fake news, posing significant threats to informed decision-making and
societal trust (Stanford UIT 2024; Allcott, H.. & Gentzkow, M. 2017). The role of Al, particularly
with the potential of promising emerging technologies, such as the deep fake technology
must be mentioned. (Tyagi, 2023a) In light of the promising effects of deep fakes (such as in
marketing and advertising, and the healthcare), these technologies can not be outrightly
banned, as also underscored in the recent EU Al Act (European Commission. 2024).
Interestingly, the convergence of Distributed Ledger technologies, that is using blockchain to
detect the source of deep-faked images and videos can help segregate authentic from the
inauthentic content (Tyagi, 2023a).

Before delving into the convergence of Al and blockchain technologies, it's important to
recognize their independent advancements and the specific domains they are transforming.
Artificial Intelligence has progressed from theoretical concepts to practical, impactful
applications. Major strides in machine learning, particularly in deep learning, have enabled Al
to process and analyze data at unprecedented speeds and accuracy, leading to innovations
in fields ranging from autonomous driving to personalized medicine. Meanwhile, blockchain
technology has matured beyond its initial cryptocurrency applications to become a
fundamental tool in enhancing security, transparency, and efficiency across various
industries. It has played a key role in redefining supply chain management, financial
services, and secure digital transactions. These separate advancements set the stage for a
transformative synergy when Al and blockchain technologies are integrated.

Historically, there was a delineation between traditional software, rooted in static datasets
and established rules, and the expanding world of data analytics, encompassing advanced
data science and reinforcement learning—what we now umbrella under the term ‘artificial
intelligence’ or 'Al' (Russell & Norvig, 2020). At its core, Al is about deriving insights from
data, learning from it, and subsequently, making informed decisions (QECD, 2023). As the
usage of Al spreads across varied sectors, ensuring the credibility of its decisions is
necessary, not only for operational excellence but also for upholding public trust and ethical
standards (Borenstein & Howard, 2020). Today we count different classes of Al. During the
last years there have been significant advancements in artificial intelligence (Al), particularly
in deep learning, enabling the learning from existing data and the creation of new designs
(Liao et al.. 2024). Generative Al, which involves the use of machine learning algorithms to
learn from data and produce new content, has been identified as a leading technological
trend (Alloghani, 2024). Particularly examples such as ChatGPT developed by OpenAl, and
AlphaFold by DeepMind have showcased the adaptability of generative Al across various
fields (Liao et al.. 2024). Today's advanced generative Al products, with their vast capabilities,
offer numerous benefits, automating and simplifying traditional tasks. However, the




methodologies these Al models employ have raised questions about the reliability of data
sources, the quality of the information produced, and the ownership of this access (Russell

& Norvig, 2020).

Blockchain, characterized by its decentralized nature, immutability, and heightened security,
stands out as a transformative technology in this landscape (Narayanan et al. 2016). It
promises to elevate transparency and potentially reduce or even eliminate the role of
intermediaries. However, the journey of blockchain adoption is laden with challenges: from
issues of scalability and the complexities of integration with existing systems to the
intricate dance of navigating the regulatory landscape (Glrpinar et al. 2024).

Al, with its ability to mimic learning, reasoning, and adaptability, presents itself as a
powerhouse of modern computation. Its scope spans from the simplicity of automation to
the intricacies of complex decision-making (Russell & Norvig. 2020). Yet, implementing Al is
not without its challenges. The sheer volume of data it demands brings forth serious privacy
concerns (Zuboff, 2019). Additionally, its often opaque decisions can inadvertently perpetuate
biases or be based on inaccurate or even misleading data (Buolamwini & Gebru, 2018);
(Babaei, Giudici & Raffinetti, 2024); (Giudici & Raffinetti, 2023). These, coupled with ongoing
concerns about its security and scalability (Goodfellow et al. 2020), highlight the urgent
need for meticulous regulatory and ethical considerations.

Blockchain's inherent properties might offer solutions to some of Al's challenges. Its
decentralized architecture can enhance the diversification of Al data sources, reducing
inadvertent biases in Al outputs. A significant advantage of blockchain is its ability to
integrate incentive systems, letting people share data in a controlled way and earn rewards
(Tapscott & Tapscott, 2016). This empowers individuals by giving them more control over
their data, sighaling a change in traditional data collection methods. Moreover, blockchain's
immutable nature ensures a transparent, traceable, and unchangeable record of Al decisions
(Narayanan et al.. 2016), promoting trust and accountability in Al systems.

On the other side with its prowess in handling vast datasets and pattern recognition, Al can
streamline and enhance blockchain's scalability, detect and rectify anomalous behaviors,
and potentially prevent hacks, money laundering, and other illegal activities. Moreover, Al's
user-friendly interfaces can simplify the complexity of blockchain interactions for everyday
users, driving broader adoption and even being used for educational purposes. Al could also
enhance the flexibility of smart contracts. Traditionally, smart contracts are limited to
executing predefined algorithms, requiring every possible outcome to be anticipated and
coded in advance. This approach results in a rigid functionality. Integrating Al capabilities
could enable smart contracts to adapt to a wider range of situations dynamically. Some
proposals seem to go in a similar direction (ACM paper. SingularityNET, Giza, EZKL). However,
this also significantly increases the importance of ensuring that the Al systems are trained
on appropriate data, thereby fostering a virtuous cycle of improvement between the two
technologies (EUBOF, 2020, Galaxy Research).




As we delve into the potential of Al and Blockchain, this paper will explore the ways these
technologies can converge to redefine industries and societal norms. We will explore their
role in enabling data economies, reshaping everything from decentralized finance to
healthcare, and advancing the sustainability and authenticity of digital interactions. This
exploration will cover topics ranging from Al-driven trading strategies in DeFi to enhancing
digital twins, from reimagining the metaverse to fostering community-based innovation.

Furthermore, we address the challenges and propose solutions for securing data sharing,
enhancing data provenance, and leveraging blockchain for improved data integrity and
consent management. By fostering an ethical framework and encouraging global
collaboration, we aim to guide these technologies towards a future where they contribute
positively to society, ensuring they enhance rather than compromise our ethical and
governance standards. Through this comprehensive analysis, we advocate for a unified
approach that views technology not in silos but as an integrated framework aimed at driving
a sustainable, equitable, and technologically empowered future.

2. Overview of Al and Blockchain Convergence

In today's digitized world, both Al and blockchain stand as beacons of transformation, each
offering profound shifts in their respective domains (Hussain & Al-Turjman, 2021).
Combining these two technologies not only augments their strengths but also paves the way
for a dynamic synergy (Dinh & Thai, 2018). In this confluence, Al can thrive with enhanced
trust, transparency, and efficiency, while blockchain systems stand ready to benefit in terms
of optimizing operations and increasing security when it comes to prevention and faster
detection of money laundering and financing of terrorism (Dinh & Thai, 2018).

Understanding the individual advancements in Al and blockchain is crucial for appreciating
their combined potential. Al’'s capabilities in data analysis and decision-making, when paired
with blockchain’s features of decentralization, transparency, and security, can lead to
innovative solutions that address current technological and societal challenges. For
instance, Al can enhance blockchain’s efficiency and security, while blockchain can provide a
robust frameworks for data integrity and trust in Al systems. This convergence is poised to
revolutionize various sectors, offering new paradigms in data management, automation, and
secure, decentralized operations.

2.1. Enabling Dataconomy

Data serves as the cornerstone for Al systems (Russell & Norvig, 2020). The richer the data an
Al model receives, the more it can refine its functions (Russell & Norvig, 2020). For instance,
many modern text-based generative Al is trained on a dataset called Common Crawl, an
archive of a majority of the Web, at 3.35 billion pages worth 450 TB of data. This emphasis on
data, however, introduces critical concerns regarding its access, security, authenticity, and
overall integrity. This is precisely where blockchain steps in as a solution. By offering a




secure, tamper-proof platform, blockchain could ensure that Al is fed with genuine, authentic
and high-quality data as long as the blocks do not contain any malicious data. In practical
terms, this does not necessarily mean the training data for Al itself needs to be stored on a
blockchain, but could take the form of cryptographic proof of its quality or provenance being
secured on a blockchain. It also could clarify the decision-making processes within Al,
addressing the often-cited "black box" criticism (Nassar et al., 2019). Furthermore, blockchain
encourages a decentralized Al framework, where multiple nodes collectively participate,
preventing any single entity from holding absolute control (Montes & Goertzel, 2019).

Through blockchain, a transformative approach can emerge wherein individuals can manage
their data, decide on its accessibility, and even monetize it (Montes & Goertzel, 2019). This
paints a picture of a future where individuals stand at the center of data ecosystems, with Al
systems seeking permissions and possibly offering compensation for user insights and data
(Montes & Goertzel, 2019). On the other hand, while blockchain offers much to Al, it too can
benefit from Al's capabilities (Dinh & Thai, 2018). Despite its robustness, blockchain is not
entirely immune to threats. Here, sophisticated Al algorithms can oversee blockchain
network activities, identifying and mitigating anomalies, thereby strengthening blockchain's
defenses (Salah et al.. 2019).

2.2. Central Al vs Decentralized Al

In exploring the convergence of Al and blockchain, it is crucial to understand the distinct
characteristics and implications of centralization in Al and decentralization in blockchain
technology. Centralized Al systems, where data and decision-making processes are
consolidated by a single entity or set of related entities, offer significant computational
power and efficiency. These systems can execute complex algorithms, manage large
datasets, and provide rapid insights (Montes & Goertzel, 2019). However, this centralized
approach often leads to a concentration of power and control (Cihon et al., 2020), raising
concerns over transparency and privacy. Centralized Al systems can inadvertently reinforce
biases if they rely on homogenous or skewed datasets, necessitating diverse data sources for
comprehensive and unbiased Al decision-making. Integrating various perspectives and data
points allows Al to generate more accurate, inclusive, and ethically sound outcomes.

In contrast, decentralizing Al involves diversifying data sources and decision-making
processes across multiple points (Demazeau & Muller, 1991). Moreover, decentralized Al goes
beyond just distributed data sources and decision-making. It prioritizes open-source
principles, fostering collaboration and transparency throughout the Al development lifecycle.
This approach aligns with the core characteristics of blockchain, emphasizing distribution
and decentralization (Grosse et al. 2020). Moreover, the transparent and independently
auditable nature of blockchains makes it easier to inspect whether the datasets used for
training are, in fact, diverse and reduce bias. By sourcing data from a diverse set of
decentralized nodes, Al systems can access a richer, more varied pool of information,
significantly reducing the risk of biases and enhancing system security against typical
failures of centralized systems (Cao, 2022).




Decentralized Artificial Intelligence DAI, as explained by Cao, (2022), involves "storing,
updating, sharing, and exchanging decentralized intelligence between decentralized agents,
nodes, or devices; and integrating decentralized intelligence from local agents and across
decentralized ecosystems". This approach includes using blockchains and federated learning
to enable autonomous agents on devices to carry out Al tasks locally, either as independent
entities or part of a connected network, maintaining privacy and decentralizing
decision-making (Cao, 2022). In effect, decentralized Al leverages the strength of varied data
inputs, ensuring a more holistic and representative view (Cao, 2022). This diversity is vital in
training Al models that are resilient, least prompt to biases, and adaptable to different
scenarios and populations (Cao, 2022).

In practice, this means building Al systems that are not only powerful and efficient but also
ethically sound, transparent, and inclusive, by building them in a more representative and
collective manner (Cao, 2022). The integration of decentralized Al models and blockchain
technologies is set to democratize Al development, reducing the dominance of large
technology vendors and increasing transparency in Al decision-making (Montes & Goertzel,
2019).

SingularityNET presents a compelling case of decentralized Al in action. By creating an open
marketplace for Al services, it empowers developers and businesses to deploy and exchange
Al capabilities seamlessly. This decentralized network of Al services, built on blockchain
technology, facilitates not only a diversified range of Al solutions but also promotes a
cooperative environment where Al systems can learn from each other, thus improving over
time. Another great example of decentralized Al is the Ocean Protocol which uses blockchain
technology to democratize access to data, a critical resource for Al development. Through its
decentralized data marketplace, Ocean Protocol enables a wide range of data providers to
contribute to Al training datasets, thereby enhancing the diversity and quality of data
available for Al models. This approach not only promotes data availability but also ensures
data privacy and user control, aligning with the principles of decentralized Al.

However, integrating these two technologies is not without challenges. From the technical
complexity of harmonizing systems that operate under very different principles to concerns
about the privacy and governance of data generated or processed by Al on blockchains.
Furthermore, scalability remains a crucial issue, as both technologies must be able to handle
increasing volumes of operations without compromising their performance or security,
METLABS.

2.3. Using blockchain to leverage decentralized training for Al models

In looking at transformer based architectures, blockchain could provide benefits through
decentralized training. Traditional centralized training methods often face challenges in
efficiently distributing computational workloads across multiple processors or GPUs due to
limitations in bandwidth, communication overhead and synchronization bottlenecks. In
contrast, blockchain networks offer a decentralized infrastructure where training tasks can



be parallelized and distributed across a vast network of nodes, each contributing
computational resources to the training process.

Blockchain’s distributed nature allows for the creation of a peer-to-peer network where nodes
can collaborate in the training of Al models without relying on a centralized server - enabling
the simultaneous execution of training tasks on multiple nodes. This leads to faster
convergence and reduced training times for large-scale models. Blockchain’s consensus
mechanisms ensure that all nodes in the network agree on the validity of training updates,
maintaining data integrity and preventing inconsistencies in the model’s parameters.

Furthermore, blockchain-based decentralized training facilitates the aggregation of
gradients or model updates from different nodes in a secure and transparent manner. Each
node independently computes gradients using its local data and contributes these updates
to the global model through a consensus mechanism. This parallelized approach enables
efficient utilization of computational resources and accelerates the training process for
transformer-based models with billions of parameters.

It is also possible to pool computational functions in decentralized training for Al models. For
example, Secure Multiparty Computation (MPC) is a cryptographic technique allowing
multiple parties to jointly compute a function over their private inputs while keeping those
inputs confidential (Knott et al., 2021). With Al models, MPC could be applied to address
privacy concerns and maintain the confidentiality of data (Knott et al., 2021). In decentralized
training, participants (nodes) could apply MPC to compute model updates based on their
local data. During decentralized training, model updates from multiple nodes would also
need to be aggregated. MPC can be used to securely aggregate any model updates, ensuring
that the final model parameters result from a joint computation rather than exposing
individual contributions (Knott et al., 2021). This helps prevent potential information leakage
during the aggregation phase, making it suitable for privacy sensitive Al applications (Knott
et al. 2021). By applying MPC to Al models, nodes in a decentralized training network could
agree on a model update without revealing their individual gradients, enabling secure
consensus by combining encrypted inputs from all nodes. Nodes can therefore determine the
next model update without revealing their local data. Additionally, open-source MPC libraries,
(e.g. SCALE-MAMBA).can help ensure trust and create transparency in decentralized Al
training. By allowing public scrutiny of the code, these libraries empower developers to verify
the security and proper functioning of MPC implementations.One potential drawback in
applying MPC to decentralized models is the computational intensity. Al training models
often require complex, large data sets (Daglarli, 2019) therefore employing efficient MPC
protocols and improvements in hardware acceleration are crucial to achieving practical
performance at scale.

3. Case examples on Real-World Applications with Al and Blockchain

This chapter goes into the practical and transformative applications of Al and blockchain
technology across various sectors. It presents the synergy between these two cutting-edge
technologies and how they are being leveraged in real-world scenarios, offering innovative



solutions and reshaping industries. From the complexities of DeFi and the intricacies of
digital twin technologies to the expansive potential of the metaverse, the intersection of Al
and blockchain demonstrates a remarkable capacity for enhancing sustainability,
authenticity, and healthcare applications.

3.1. Al and decentralized finance (DeFi)

Automated market making (AMM) is a fundamental component of decentralized exchanges
(DEXs) such as Uniswap, Balancer and Curve (Xu et al., 2023). Liquidity providers (LPs)
deposit asset into liquidity pools to facilitate trading without relying on traditional order
books (Xu_ et al. 2023). As liquidity provision involves users depositing funds into these
pools, Al can play a key role in optimizing the process (Rabetti, 2023).

3.1.1.  Al-Driven trading strategies

Al algorithms can analyze vast amounts of historical trading data, order book dynamics, and
market sentiment indicators to develop and execute strategies for Automatic Market
Makers- AMM - continuously adjusting prices and liquidity provision (LP) (Xu et al., 2023).
This can aid LPs in setting more competitive pricing, adjusting their positions in real-time
and adapting to changing market conditions (Xu et al., 2023). For example, various machine
learning algorithms including regression, time series forecasting, neural networks and
ensemble methods can be applied to predict asset price movements. Reinforcement learning
can also be used to optimize trading strategies (Alameer, et al. 2022).

Therefore, Al can capture the complex relationships between data to apply, and adapt
on-the-fly to changing market conditions (Sullivan & Wamba 2024). Al models can also
incorporate sentiment analysis, by monitoring news feeds and social media chatter which in
the world of crypto trading is crucial as the industry operates under the umbrella of so-called
‘narrative economics (Hamdan et al., 2021).” More broadly, Al can be used to create full
portfolio-driven strategies rather than focusing specifically on individual assets. Modern
portfolio optimization techniques such as Markowitz’s Mean Variance Optimization (Giudici
& Polinesi, 2022); (Giudici, Leach & Pagnottoni, 2022), or more advanced techniques such
as the Blackman-Litterman model (He & Litterman, 2002). This extends traditional
mean-variance optimization by incorporating subject views and forward-looking
expectations into the portfolio allocation process (He & Litterman. 2002). It is particularly
useful in situations where historical data alone may not fully capture market dynamics, as is
often the case in DeFi.

Al can dramatically adjust the prices at which assets are bought and sold within liquidity
pools in correspondence with changing supply and demand conditions. Al algorithms can
also be deployed to assess the risk associated with specific pools and rebalance positions
accordingly. For example, Al-driven risk management models can calculate Value at Risk
(VaR) and Conditional Value at Risk (CVaR) (Giudici & Abu-Hashish, 2019); (Ahelegbey &
Giudici, 2022), recommending position sizing and stop loss levels. Such tactics are




important in DeFi trading where volatility is high. Dynamic pricing in turn ensures that LPs
offer competitive rates, which leads to more traders on a given DEX. Additionally, Al can help
LPs manage exposure to more volatile assets and act as a check against impermanent loss.
Al algorithms can continuously monitor asset prices, trading volumes and orderbook data
(Amirzadeh et al., 2022). This can be very useful for the monitoring and trading across
multiple DeFi protocols and DEXs allowing to identify instances when an asset’s price is
lower on one platform or higher on another.

This can allow users to take advantage of cross-protocol arbitrage, capitalizing on price
disparities. Through automated execution, Al-powered trading bots can execute arbitrage
trades swiftly, placing orders on different platforms simultaneously to capture price
differentials (Sifat. 2023). Al can further analyze liquidity pool data across various DEXs and
lending platforms, assessing factors such as pool depth, trading volume, fees, and slippage
(Basly. 2024). This helps in identifying pools with the most favorable conditions for liquidity
provision (Basly, 2024). In terms of risk management, Al models can help assess the risks
associated with arbitrage and liquidity allocation strategies, considering factors such as
market volatility, transaction costs and potential liquidity shortages (Sadman et al.. 2021).
This helps the model recommend appropriate position sizing and risk mitigation strategies
as necessary. By leveraging dynamic liquidity allocation, Al models can automatically
reallocate assets to pools with more favorable terms or higher yield (Basly, 2024). Through
data aggregation and real-time updates, Al systems can aggregate data from multiple
sources including DEXs, lending protocols, layer 1/layer 2 blockchains and roll-ups, giving
users up-to-date information on market conditions and opportunities (Basly, 2024).

Today we can already observe Al-powered bots such as earlybird, which automatically
reinvest earned rewards or staking payouts into additional yield farming opportunities or
assets. Al can also be used to adapt yield farming and staking strategies based on changing
market conditions (Nartey, 2024) such as fluctuations in gas fees, network congestion or
protocol upgrades. For example, the algorithm could set thresholds for gas fees,
automatically triggering actions when fees fall within specified ranges. By detecting network
congestion and/or transaction backlog and block confirmation times, Al could identify
optimal entry points to perform DeFi activities such as providing liquidity or claiming
rewards. Al can keep track of protocol upgrades or governance decisions, adjusting staking
strategies to align with new rules or opportunities. Moreover, Al algorithms can assess the
risk-return profile of different yield farming and staking opportunities and adjust the
allocation of assets accordingly through optimal pool selection techniques (Nartey, 2024).

3.1.2.  Fraud detection and security

Al algorithms can analyze user behavior, transaction patterns and historical data to
establish normal profiles. Any deviations from these profiles such as unusually large
transactions or irregular trading activity can trigger alerts for further investigation. This sort
of behavioral analysis can identify fraud such as front-running or suspected insider trading.
Moreover, machine learning algorithms can be trained to detect anomalies in transaction
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data, including any outliers or patterns that do not conform to expected ‘norms’ (Luo et al.,
2023). Anomaly detection can be done through statistical methods or with advanced
algorithms like autoencoders. Additionally, Al can perform clustering and link analysis on
blockchain addresses to group together related addresses that may be associated with the
same entity, further helping track suspicious activity across multiple addresses (Luo et al.
2023). This is important when trying to unravel complex fraud schemes, money laundering or
the movement of stolen assets across the blockchain (Giudici & Raffinetti, 2022; Aldasoro et
al., 2022).

Al can also be helpful when it comes to pattern recognition in smart contracts, analyzing
them to detect vulnerabilities, code exploits and potential security risks (Luo et al., 2023).In
DeFi, where hacks and attempted hacks are a growing concern, machine learning algorithms
that can identify patterns indicative of malicious code can help secure both the protocol and
user funds. Natural language processing (NLP) models can analyze news articles, social
media and online forms to gauge market sentiment, identifying discussions related to
potential fraud or security threats (Luo et al., 2023). Al powered monitoring systems can be
further scaled to handle large volumes of transactions and provide real-time alerts to
security teams or users when suspicious activities are detected (Luo et al.. 2023).

3.1.3. Privacy and Al in DeFi

It is therefore well established that DeFi is an expanding domain characterized by financial
applications executed through smart contracts within the blockchain infrastructure and this
has introduced challenges related to utilizing privacy data to enhance market efficiency
while safeguarding user privacy (Zhuangtong Huang et al. 2023). In traditional finance,
where we have intermediaries, there is granted a "control", a private access and so the privacy
of data subjects; in DeFi, since platforms operate on blockchain networks, anyone can access
them without any control and privacy, in a total transparency manner. Adding to this, today
the combination of DeFi and Al offers several opportunities to enhance the decentralized
model, making it even more transparent, where security also needs to be considered: as Al
algorithms are susceptible to data manipulation, there could be risks of loss due to
inaccurate predictions. That is why it is absolutely necessary to have a risk-based and above
all multidisciplinary approach. Today, the so called "Privacy Paradox" in DeFi sets several
challenges: a) on one hand the blockchain transactions are pseudonymous (because the
users are represented by cryptographic addresses) but the analytical tools could potentially
de-anonymize them, posing privacy concerns (Diana Ambolis, 2024); b) the transparent
nature of the blockchain means that all transaction are recorded on the-chain and this could
exposes data subjects to security and financial risks (Diana Ambolis, 2024); c) the
immutable nature of the blockchain forecloses the right to amend and forgot of the data
subjects granted by art. 16 - 177 GDPR. An answer to these challenges could be Al: Al -Driven
solutions to grant a DeFi Privacy.

Applying federated learning, which is defined as a machine learning approach where a model
is trained across multiple decentralized devices or servers holding local data samples
without exchanging them (McMahan et al.. 2017), to DeFi can be used to analyze transaction
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data, trading behaviors, and liquidity provision across multiple users without exposing
individual user data. For example, a DeFi platform can use federated learning to gain insights
into user preferences for liquidity pool selection without knowing specific user actions. In
DeFi lending, secure multiparty computation (MPC) could be used to calculate interest rates
and loan terms without revealing the borrower’s financial details to lenders or vice versa
(Baum et al., 2023). Furthermore, homomorphic encryption' can be used on DeFi platforms to
perform calculations related to portfolio diversification, risk assessment, or token swaps
without exposing user holdings and/or trading strategies.

Zero knowledge proofs such as zk-SNARKSs or zk-STARKs provide an alternative mechanism to
achieving similar goals as secure MPC and (explained in detail under section 4) can be
applied to verify transactions, user balances and smart contract compliance without
disclosing transaction details (Baum et al.. 2023). For example, a DeFi protocol, can deploy a
SNARK proof to verify the validity of a transaction without revealing the sender, receiver or
transaction amount. There is also the option to use differential privacy techniques, adding
noise to query responses which can help protect user specific data when analyzing market
trends, liquidity pool utilization or governance voting patterns. Al can also be incorporated
into confidential smart contracts (e.g. fhEVM smart contracts, or Secret Network). For
example, when a user wants to make predictions or inferences using an Al model, they can
send their encrypted input data to Secret Network, which performs computations on the
encrypted data, ensuring it remains private throughout the process. Conversely, Al-services
such as prediction models or data analysis tools can be deployed as decentralized
applications (Dapps) on fhEVM. This would enable Fully Homomorphic Encryption (FHE)
operations on the Ethereum Virtual Machine and facilitate confidential payments for
accessing these services.

3.1.4. Natural Language Processing (NLP) for Data Analysis

Sentiment analysis (also known as opinion mining) assesses the sentiment or emotional
tone expressed in text data. NLP models classify text as positive, negative or neutral to gauge
market sentiment. In DeFi, NLP can monitor social media posts and news articles to gauge
sentiment toward specific DeFi projects, cryptoassets or market trends (Cerchiello, Giudici &
Nicola, 2017). Automated event detection can also provide real-time updates on DeFi project
announcement, protocol upgrades, regulatory developments and market moving news to
help traders and investors stay informed. It can also be used in the reverse, to help regulators
and policy makers assess the overall health and stability of the DeFi ecosystem by staying
on-top of both positive and negative market events.

NLP can also be used to track changes in market sentiment over time (Paramanik & Singhal,
2020), taking stock of how shifts in sentiment towards specific DeFi projects move as

! Homomorphic encryption allows computations on ciphertexts, producing encrypted results that match the
plaintext operations once decrypted. This feature is crucial for modern communication systems. RSA was the first
public-key encryption scheme with a homomorphic property, but it loses this property due to the need for padding
messages with random bits for security. To address this, numerous homomorphic encryption schemes have been
developed over the past three decades (Yi et al., 2014).
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market conditions fluctuate. Entity recognition is also possible through NLP techniques, with
NLP models able to identify and categorize entities mentioned in text data including crypto
assets, DeFi projects or influential figures in the space. Through event impact analysis, NLP
can assess the impact of specific events or news (Yadav et al.. 2020) in the DeFi market by
analyzing how sentiment and trading volumes respond after the market shock. On a
community level, NLP can be used to track community sentiment (Eliagik & Erdogan, 2015),
allowing DeFi projects to better understand user concerns, preferences and voting patterns
which can lead to more informed governance decisions.

3.2. Enabling Digital Twins

The fusion of Generative Al with digital twin technology brings a new era of innovation in
different sectors (Bariah & Debbah, 2022) such asset-heavy industries like manufacturing or
utilities. This combination facilitates an interesting approach to managing and monitoring
critical assets. Using advanced neural network architectures applied to extensive visual data,
we can develop sophisticated models for diverse assets such as machinery, electrical
systems, and supply chains. This method significantly surpasses traditional inspection
techniques, enabling quick detection of anomalies and damages, and offering real-time
insights into asset health.

Beyond mere visualization, these models evolve into individual digital twins of assets. By
harnessing time series data, alongside work orders and event predictions, these digital twins
offer a comprehensive historical view, essential for superior anomaly detection and
predictive maintenance. This predictive approach not only enhances asset performance but
also extends its operational lifespan, ensuring more efficient and reliable operations.

Additionally, the incorporation of Generative Al in field service support is transforming how
support is delivered. Through retrieval-augmented generation tasks, Al can provide real-time
Q&A support and multilingual conversational assistance. These Al-driven tools, grounded in
extensive knowledge bases, offer immediate and relevant guidance, boosting the efficiency
of field service teams. This is a significant step forward in reducing dependency on manual
searches or external human support, leading to faster resolution of field issues. However,
recently, there have been cases of generative Al hallucinating in support scenarios. Such
events are not grounds to exclude the wholesale application of Al in support scenarios, but
underscore the need to improve their execution by grounding the chat bot in ‘reality’ via
fine-tuning against actual corporate knowledge bases it is meant to support. The journey of
integrating Generative Al and digital twins is not without its challenges. Building trust and
ensuring transparency in Al systems, particularly in Generative Al and Large Language Models
(LLMs), are crucial hurdles (Nah et al, 2023). Often, Al projects face roadblocks in their
proof-of-concept stages due to strategic misalignments or doubts about the model's
outcomes. Navigating these challenges calls for more than just technological solutions; it
demands a socio-technological approach that recognizes the broader implications and
impacts of Al in real-world settings. This approach is key to unlocking the full potential of Al
and digital twin technology in enhancing asset-heavy industries.
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3.3. Bringing the Metaverse closer to reality

The metaverse, a burgeoning digital landscape driven by emerging technologies, is poised to
undergo a transformative leap with the integration of Al blockchain (Vaghani et al. 2022). As
Al embodies procedural generation techniques, its advances promise to improve realistic
environments, intelligent interactions, and content creation, fostering novel forms of
creativity and making the metaverse more accessible. On the other side, blockchain
solutions enable digital ownership and authentication leading to democratic governance and
individuals with power over their own data. Also, they are used as backbone infrastructures
promoting interoperability of ecosystems and enabling financial flows (Klpeli & Gurpinar
2023).

In the realm of virtual environments, Al is already shaping the way we interact with these
digital spaces. For instance, Meta's “BuilderBot” demonstrates the potential of Al in the
metaverse. This Al-powered interface allows users to conjure virtual objects into existence
through simple voice commands, showcasing how intuitive and interactive the metaverse
can become.

Avatars, the digital representations of users in the metaverse, are evolving to become more
personalized and expressive, thanks in part to Al. Apple's Vision Pro, for instance, offers a
feature enabling users to create 3D avatars for video conferencing, hinting at the diverse
possibilities for self-expression in the metaverse. Al is set to expand these capabilities
further, offering users a vast array of options to craft avatars that resonate more deeply with
their identities and preferences.

Al's influence extends to animating the metaverse's inhabitants, from non-playable
characters to virtual assistants and interactive chatbots. These Al-driven digital entities are
designed to be more than mere decorative elements; they are programmed to react, interact,
and tailor their responses according to individual user preferences, adding a layer of
personalization to the metaverse experience.

Due to the diverse stakeholders involved in metaverse ecosystems, it is crucial to prove
ownership of digital assets, including virtual goods, land, and intellectual property, fostering
a vibrant economy. Here, the immutable records of blockchain solutions as well as their
unique non-fungible tokens come into place that allow for transparent and tamper-proof
records of transactions, interactions, and ownership changes within the metaverse,
enhancing trust and accountability among users and stakeholders. Also, financial flows are
transferred into the digital space and streamlined to exchange digital assets without the
involvement of third parties (Huynh-The, et al. 2022).

Furthermore, on the network layer (which provides the underlying infrastructure for
communication and data exchange), the decentralized infrastructures of blockchain
solutions enable interoperability between different metaverse environments and platforms,
allowing users to seamlessly transfer assets and identities. Ultimately, the infrastructures
also enable democratic governance mechanisms enabling community-driven voting and
decision-making processes regarding metaverse developments, policies, and content
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creation or moderation that show potential far beyond social individual-centric metaverse
approaches, but also in the industrial metaverse where enterprises co-create services and

products (Kupeli & Glrpinar 2023).

A key aspect of the integration of Al and blockchain into the metaverse is their potential to
enhance inclusivity (Eernandes et al; Schuetz & Venkatesh, 2020). Al has long been
instrumental in making digital experiences more accessible, such as through automated
subtitles for the deaf or hard of hearing, language translation to bridge communication gaps,
and providing speech assistance for individuals with conditions like ALS. With blockchain
solutions, we have infrastructures at our fingertips that involve participants equally using a
peer-to-peer approach and powering federated learning approaches to make data sources
more diverse and relevant. In the metaverse, these capabilities are expected to be amplified,
allowing for a more inclusive environment where barriers to participation are significantly
reduced (Schuetz & Venkatesh, 2020).

In summary, Al and blockchain are not just changing how we perceive and interact with the
digital world; they are actively redefining it. The convergence of Al and blockchain in the
metaverse is set to unlock new avenues for engagement, connection, and collaboration,
heralding a future where digital experiences are more immersive, personalized, and inclusive.

3.4. Sustainability & Authenticity

This bridge between Al and Blockchain holds potential for a variety of sectors and industries.
Their combined capabilities can revolutionize industries by ensuring secure, transparent,
and efficient operations. For example, in the international trade and supply chain industry,
which impacts almost every other industry and activity worldwide, Al can predict logistical
challenges, such as weather-related disruptions, while blockchain ensures transparency in
product origin and handling and product authenticity. An interesting and practical example
can be seen in the case of smart precision-based farming, whereby the convergence of Al and
blockchain technology, can not only enhance accountability but will foster trust in global
trade by offering a time-stamped ledger of transactions to the consumer. This in turn can
help achieve the UN Sustainable Development Goals 2 (food for all), 3 (health for all) and 12
(sustainable production and consumption patterns) (Tyagi, 2023)

When it comes to sustainability, the fusion of blockchain and Al can significantly elevate
existing solutions. For instance, in Carbon Credit Trading, blockchain verifies the authenticity
of carbon credits (Espenan, 2023), while Al forecasts market trends to optimize pricing and
trading (Atsalakis, 2016). In waste management, Al can anticipate waste generation, allowing
blockchain to trace and incentivize source reduction (Gopalakrishnan & Ramaguru, 2019). In
the realm of renewable energy, Al's forecasting abilities paired with blockchain's secure
tracking can boost renewable investments (Taherdoost. 2024). Furthermore, in water
conservation, Al's ability to gauge regional water requirements and wastage combines with
blockchain's transparent water credit trading to champion conservation (Nagash et al.,
2023). Moreover, in biodiversity conservation, Al's analytics can preempt threats in wildlife
and marine reserves, with blockchain ensuring a transparent allocation of resources,
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guaranteeing genuine utilization (Sivarethinamohan & Sujatha). Additionally, in smart
farming, the amalgamation of Al-driven predictions regarding weather, soil quality, and crop
health, paired with blockchain's guarantee of traceability, stands to revolutionize food safety
and quality (Karunathilake et al. 2023). For the latest there are projects that employ loT
Automation for real-time surveillance of growth environments, dynamically activating
devices to create the perfect conditions for crops. Further enhancing its capabilities, some
projects use Al to process varied data, guiding farmers towards optimal decisions; the
integration of computer vision offers a window into the health and quality of crops. The
Digital Twin feature provides a holistic, real-time digital mirror of greenhouses by merging
loT, Al, DLT, and Virtual Reality. Additionally, through Decentralized MarketPlaces - DEX,
projects can revolutionize the agricultural sector by sidestepping middleperson, thereby
fostering direct links between growers and consumers and creating innovative economic
avenues. An example for projects that combine these different technologies is Zignar

Technologies.

Al can help sustainability by taking into proper account Environmental, Social and
Governance factors, consistently measured through the blockchain. For example, ESG factors
can be used to improve risk management, incentivising funds allocation towards more
sustainable investments (Agosto. Cerchiello & Giudici, 2023).

3.5. Health Applications

In another example, in the healthcare space, blockchain-secured portable digital credentials
can be used to store patient health records and medical history, ensuring that the patient
has full control over their data while keeping the records tamper-proof. In such systems, the
actual patient/medical data can be kept off-chain for privacy purposes, with cryptographic
signatures or hashes stored on a blockchain to ensure transparency and tamper-proofness
(Siqueira, Conceicdo et al, 2021). Al can analyze these records to predict patient health trends
or disease outbreaks and also, if the patient chooses, the data can be donated or shared with
research institutions which can use the data within an Al system to find patterns that will
help them understand certain diseases or conditions. The patient, in turn, can receive an
incentive (tokens) for sharing their information. For example, Halfloop provides a
blockchain-secured platform where patients can store and share their medical device
details, empowering clinical teams with precise data for enhanced care and offering
industries real-world feedback to refine their products. In the second stage, they plan to
integrate future Al capabilities. This integration of security and intelligent analysis aims not
only to enhance patient outcomes and industry innovations but also to safeguard patient
data privacy, all while providing incentives for data sharing.

4. Challenges and Solutions

The rapid rise of Al brings with it a series of intertwined challenges. Acquiring high-quality,
unbiased data in vast quantities for Al models remains a hurdle, especially when ensuring
these models generalize well in diverse real-world scenarios. The opaque decision-making
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processes of many Al systems, often termed the as already mentioned the "black box"
dilemma, raise ethical and trust issues, making the explainability of these models
paramount (Nassar et al.. 2019). Additionally, the sheer computational demands of advanced
Al models present both financial and environmental concerns. As we further integrate Al into
our lives, concerns about adversarial attacks compromising Al systems, the potential for job
displacement, and the overarching dominance of a few tech giants in the Al arena grow more
pronounced. Furthermore, the swift pace of Al advancements often outpaces regulatory
measures, leading to gaps in oversight and policy. Lastly, crafting truly effective Al solutions
calls for a harmonious blend of interdisciplinary expertise, a feat easier said than done.

Al and blockchain are reshaping the way businesses and society interact. Yet, Europe seems
to lag in funding and development compared to global players like the United States and
China (Verbeek & lLundqvist. 2021). The bulk of funding for Al and blockchain projects is
concentrated in the US and China, accounting for around 80% of the total global investment
of about €25 billion annually (Verbeek & Lundqvist, 2021). The European Union, on the other
hand, is investing just around €1.75 billion per year, making up only 7% of the global total
(Verbeek & Lundqvist, 2021). This difference reveals an annual investment gap in Europe that
could be as high as €10 billion.

One key reason behind this gap is the lesser involvement of big institutional investors like
pension funds and insurers, especially in supporting later-stage startups that are working on
Al and blockchain technologies. This is where the crux of the issue lies - getting enough
funds to help these startups move from initial concepts to fully developed, market-ready
solutions. But it's not all gloomy. Europe has a strong base of high-quality research and a
vast pool of digital talent. The region has the right ingredients to compete, develop, and
deploy Al and blockchain technologies across various sectors. With more specialized
researchers than the US and China, Europe has a strong foundation to build on.

A united effort is needed. By pooling financial resources from both public and private sectors,
Europe can support the scale-up of innovative Al and blockchain ventures. This means more
investments, especially in later-stage startups, to bring excellence in research to the market,
helping build a smarter and greener society. With the right amount of investment and a
collaborative approach, Europe has the opportunity to not only catch up but potentially lead
in the Al and blockchain space, paving the way for digital transformation that could ripple
through societies making them more digital, green, and sustainable. Moreover there are
particular challenges of Al that can be solved or mitigated by Blockchain:

4.1. Data Privacy, Ownership, and Blockchain

Al's dependence on vast amounts of data for training and operation has raised significant
privacy concerns. The General Data Protection Regulation (GDPR) sets stringent guidelines for
data handling, directly impacting how Al models are developed and deployed. To elucidate the
compliance with GDPR in the context of Al, we have compiled a detailed table that outlines
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key stages in Al model development and their corresponding GDPR requirements (Sartor &

Lagioia, 2020).

Overview Compliance with GDPR
Data Al models typically collect data from | Article 5 and 6 GDPR require organizations
collection various sources by way of web scraping, | to collect personal data lawfully and
user interactions, loT devices, or |transparently with consent or other lawful
database collection. In such cases, | bases (e.g. contract or legitimate interest)
personally identifiable information (PIl) | being necessary prerequisites.
such as names, addresses and ID
numbers may find their way into this
data collection dragnet.
Data Raw data often includes errors, missing | Article 5 and 32 GDPR state that data
Processing | values, or outliers. In order to clean the | processing must adhere to GDPR principles
data, processing techniques such as [of data security, accuracy and data
imputation, outlier detection and | protection by design or  default
normalization are used to prepare the | Pseudonymisation techniques (e.g. random
data for further analysis. noise, salt and peppered hashes,
scrambling) may be introduced into the
query functions.
Feature Often involves aggregating or | Feature engineering techniques must
engineerin | transforming data, which may | adhere to strict data minimization practices
g inadvertently reveal sensitive | (Art. 5(1)(c) GDPR) so that only data that is
information about individuals. For | strictly necessary is collected and

example, aggregating location data over

time may expose an individual’s
routines or habits. Aggressive
employment of feature engineering
techniques  clashes with  privacy

principles such as data minimization
which is a prerequisite for organizations
to collect and process only the
minimum amount of data necessary for
a specific purpose. Moreover, techniques
such as Principal Component Analysis
(PCA) or feature selection may
inadvertently retain features containing
PIl. Even though this data is transformed
into a lower-dimensional space, it may
still contain privacy-sensitive patterns.

processed. Moreover, the application of
anonymisation and  pseudonymisation
techniques (Art. 4(5), Art.25 GDPR) should be
employed to either remove all PIl or

otherwise replace it with pseudonyms.
Privacy by design techniques (eg.
differential privacy) can be a useful

technique to add noise to data, ensuring
that privacy settings are configured by
default. As Al models often horde data
troves, it is important to establish clear data
retention policies and procedures (Art.
5(1)(e) GDPR) to ensure that engineering
pipelines adhere to these policies. Explicit
and informed consent from individuals
(Art.6 GDPR) is necessary in any and all
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Because feature engineering can be
deployed for both text and image data, it
can be targeted towards concepts such
as named entity recognition (NER) or
facial recognition/object detection. Such
techniques also make use of proxy
variables which can be strongly
correlated with sensitive attributes
meaning that personal data may not be
directly used but the proxy variables can
generate privacy risks.

cases where feature engineering may
involve PIl. Moreover, complex or high risk
feature engineering may require a Data
Protection Impact Assessment (DPIA) (Art.35
GDPR) to identify potential risks and
propose mitigation strategies. As with any
instance where data is aggregated, there is
a risk of breaches. Access controls and
encryption (Art.32 GDPR) need to be robust
and limit who can access feature
engineering pipelines and data. One of the
main challenges regarding Al models and
the collection of personal data is the clash
with data subject rights (Art15-22 GDPR).
Feature engineering processes should in
principle allow for the easy fulfillment of
data subject rights - implementing
mechanisms to respond to access,
ratification, erasure and objection requests.

Model
training

Here, datasets are divided into training,
validation and test sets with different
machine learning algorithms and
architectures being tested to find the
best-performing model. Models are
fine-tuned using techniques such as
grid search or random search through a
process known as hyperparameter
tuning. Regularization techniques like
dropout or L2 regularization are also
used to prevent overfitting. The data is
then augmented based on need (e.g.
image recognition) to increase the
diversity of the training data.

Data minimization practices (Article 5(1)(c)
GDPR) should be employed during model
training via for example, data sampling,
aggregation and anonymization. As with
feature engineering it is necessary to obtain
prior consent (Art.6 GDPR) and to provide
individuals mechanisms to withdraw their
consent. In cases where consent is not
feasible, it is important to adhere to other
lawful bases for data processing. The
introduction of sensitive data (Art.9 GDPR)
should be ring-fenced, meaning that PlIl
such as health or biometric data requires
additional protective measures. Under
Article 20 GDPR, individuals may request
their data be transferred over to them. As
such, Al models should ensure a means to
allow individuals to obtain their personal
data used in model training in a structured,
machine-readable format. Clear data
retention policies (Art.5(1)(e) GDPR), must be
in place for training data, with a means to
automatically delete or anonymise the data
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once it is no longer required for model
maintenance or improvement. Conducting
DPIAs (Art.35 GDPR) should also be part of
the process for high-risk model training
activities. Last but not least, it is
recommended to address and mitigate

biases, ensuring fair
non-discriminatory outputs.

Blockchain technology can play a key role in addressing these GDPR compliance challenges.
Its capabilities in ensuring data traceability, integrity, and secure access control align
perfectly with GDPR’s requirements. Moreover, as we saw previously blockchain's
decentralized nature facilitates transparent and consensual data transactions, making it an
ideal tool for managing data privacy in Al systems.

However, it's crucial to consider key distinctions in blockchain applications, particularly in
the realm of data privacy and ownership. Firstly, the convergence of Al and blockchain
technology must contemplate the type of blockchain used: Permissioned versus
Permissionless. Permissioned blockchains restrict write access to a select group of entities,
ensuring that only authorized participants can modify data (De Filippi & Wright, 2018). This
model is often favored in regulatory and governmental applications where data sensitivity is
key. In contrast, Permissionless blockchains allow any participant to write data, offering
greater decentralization and openness but potentially less control over data integrity.

Secondly, the distinction between On-chain versus Off-chain data access and computation is
vital from a performance standpoint. On-chain computation, where data is processed and
stored directly on the blockchain, ensures higher data immutability and security. However,
this can be resource-intensive and may not currently offer the ideal balance of performance
and cost-efficiency for every application. Moreover, on-chain data storage can pose
challenges regarding GDPR compliance due to its immutable nature, making it difficult to
delete or modify personal data once it's incorporated into the blockchain. Off-chain
computation involves processing data outside the blockchain while ensuring that
verification processes remain on-chain, which can significantly enhance performance and
scalability. However, off-chain methods might compromise data integrity and security, as the
data is not fully safeguarded by blockchain's decentralized and tamper-evident structure.
This could potentially increase the risk of data breaches or unauthorized access when
sensitive information is handled outside the blockchain's protective ledger.

To illustrate, consider the European Union's blockchain initiatives for identity management
(Meeco Group Pty Ltd, 2023)). These are typically public to read but permissioned to write,
akin to how the domain name system operates where everyone can access domain data, but
only registered entities can manage it. This structure allows regulated access while
maintaining public transparency, ideal for applications requiring both broad accessibility
and stringent control.
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Furthermore, blockchain can enhance the process of obtaining and managing user consent,
ensuring that data used in Al models is both legitimate and compliant with regulatory
standards. This harmonization of blockchain and Al not only addresses privacy concerns but
also paves the way for more ethical and responsible Al development. However, not always is
consent the best solution: with generative Al, for example, the specific uses are often
unknown, users of generative Al tools can use them for a myriad of different uses, some
benign, some malignant. Consent becomes a "blank check" to do nearly anything, so people
have no idea what they are consenting to. (Solove, 2024). Considering all the six lawful bases
to gather the data about the data subject could be another possible solution to legitimate Al
models. Considering all the six lawful bases outlined in Article 6 of the GDPR provides a more
robust framework for data handling. These include consent, performance of a contract,
legitimate interests, vital interests, legal obligations, and tasks carried out in the public
interest. Leveraging these varied legal grounds can ensure that Al models are not only
compliant but also legitimately engage with user data across different scenarios. This
approach fosters a more comprehensive strategy to address privacy concerns, support
ethical Al practices, and ensure adherence to regulatory standards.

By leveraging blockchain, individuals can gain unprecedented control over their data. This
empowerment goes beyond mere access; it extends to ownership and the authority to dictate
terms of data usage. Blockchain enables individuals to specify who can access their data
and under what conditions, bringing a new level of autonomy and security to personal data
management. This feature is crucial in an era where data is a valuable commodity, and its
unauthorized use is a pervasive concern.

Incorporating blockchain technology in data management fundamentally shifts the power
dynamics of data ownership and control. It empowers individuals by granting them true
ownership over their data, enabling them to exercise control over who accesses their
information and the conditions under which it is used. This shift is particularly significant in
an era where personal data is increasingly seen as a valuable asset. We will analyze this
further in the following section.

4.2. Using blockchain to secure data sharing and access control

Blockchain stands as a transformative force, addressing key challenges in data privacy,
ownership, and access control (Ma_et al. 2021). It involves a shift from traditional data
management models, where corporations predominantly control user data, to one where
individuals hold true ownership of their personal data, and this acquires higher relevance
when discussing Al. In the context of Al, where data is the lifeblood of learning and
decision-making processes, this shift is particularly impactful. Blockchain empowers users
with unprecedented autonomy over their data, enabling them to grant or deny access under
specific conditions, thus revolutionizing data sharing to be more consensual and controlled.

The concept of tokenization in blockchain further elevates this dynamic. It involves
representing data or data rights as digital tokens that represent ownership and rights over
digital assets. This approach paves the way for new economic models where individuals can
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directly monetize their data by selling or trading these tokens. In the realm of intellectual
property (IP) rights, blockchain's application extends to enhancing how creators and
inventors manage and monetize their IP. By tokenizing IP rights, blockchain facilitates secure
and transparent tracking of ownership and usage rights, fostering fair compensation and
mitigating the risk of unauthorized use. Moreover, blockchain introduces a variety of
incentive mechanisms. For example, users could receive tokens for sharing their data, which
can be utilized within a specific ecosystem. Smart contracts on the blockchain can also
automate transactions, transferring digital currency to users in exchange for their data
usage rights. By tokenizing IP rights, blockchain ensures secure and transparent tracking of
ownership and usage rights, facilitating fair compensation and reducing the risk of
unauthorized use, which is vital in Al development and deployment.

Furthermore, blockchain enables the establishment of user-centric data marketplaces
(Rocha et al., 2022). These marketplaces offer platforms for users to directly trade their data
with companies or researchers, ensuring ethical and consensual data usage in Al
applications. Users retain full control and transparency over who buys their data and for what
purposes, thereby aligning Al development with ethical and user-centric practices.

The use of digital identity solutions represented by cryptographic key pairs (public and
private) could be a means to overcome data-sharing challenges involving Al models. With a
blockchain-based decentralized identity management system, each participant in the Al
model development process (including data providers, Al developers and users) could obtain
a unique digital identity on the blockchain. These identities could be pseudonymous and
cryptographically secured, ensuring that only access to the private key grants access to the
digital identity. For Pll such as healthcare or patient data, it would be further possible to store
this on a permissioned blockchain network, restricting access to such data and providing
additional cybersecurity guardrails.

To generate a zk-SNARK proof for a computation on private data in an Al model, the prover
would first convert the computation into a polynomial representation. This polynomial would
then be used to create a ‘commitment’ to the private data without revealing it. The prover
would then construct a succinct proof of knowledge for the polynomial’s consistency, which
can be thought of as proving that the commitment hides a valid computation. The verifier,
without knowing the private data could then check the validity of the proof and the
consistency of the commitment. If the proof is valid, the verifier can be assured that the
computation was performed correctly on the private data without learning anything about
the data itself. SNARK proofs are also extremely compact, often just a few hundred bytes in
size, regardless of the complexity of the computation (due to the use of advanced
cryptographic techniques like the ‘Pinocchio’ protocol). Additionally, their non-interactive
nature can simplify continuous verification in Al deployments, while their widespread
adoption across various privacy technologies makes them readily available.

On the other hand, zk-STARKs are built upon more algebraic and error-correcting code-based
cryptographic primitives which can provide post-quantum security and scalability.
Generating a STARK proof involves encoding the computation and data into algebraic
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polynomials not dissimilar to zk-SNARKs. However, STARK proofs use error-correcting codes
to efficiently handle large-scale computations (Ben-Sasson et al., 2018). STARK proofs are
verified by checking that they satisfy certain mathematical relations. This verification
process is transparent and does not require the knowledge of the private data in question
making STARK proofs both highly transparent and easily auditable. The scalability afforded
by STARK proofs also makes them ideal for Al applications involving complex models and
massive datasets. Unlike SNARK proofs, STARKs do not require a trusted setup, increasing
their overall security profile. They are also designed to be post-quantum secure, which in a
world populated by ever more sophisticated Al algorithms is imperative.

4.3. Using blockchain to improve data provenance and audit trails

In a blockchain data is stored in a series of blocks, with each block containing a
cryptographic hash of the previous one. This design ensures data immutability - once data is
recorded in a block, it cannot be altered without changing the subsequent blocks in the
chain (this process may be different for ‘blockless’ protocols such as Algorand). Applying
immutable ledgers to Al models could guarantee that data records and audit series are
tamper-resistant, barring unauthorized attempts to alter the data or audit information
without the right access controls. Blockchains record data transactions in decentralized and
distributed ledgers. Each transaction includes a digital signature from the sender, details
about the data and a unique transaction ID. In a blockchain, digital signatures based on
public-key cryptography are used to verify the authenticity of blockchain transactions. Each
participant in the network possesses a private key to sign their transactions and others can
verify the signature with the corresponding public key. In Al, cryptographic signatures could
ensure that data transactions and audit entries on the blockchain are verified as originating
from legitimate participants thereby enhancing the audit trails integrity.

Blockchain transactions are also timestamped using the network’s native consensus
mechanism. This timestamp reflects the moment transactions were added to the
blockchain. In an Al model context, timestamping may be essential for maintaining the
chronological order of data transactions, allowing for proper data auditing and adhering to
GDPR requirements such as specific data retention periods. Regarding data linkage,
blockchain transactions can include references or cryptographic hashes pointing to
off-chain data storage or computations allowing for data integrity while keeping sensitive
data off-chain. For Al models, data linkage could ensure that the blockchain audit trail is
connected to the actual data sources or model versions, enabling verification that
computations were performed correctly on specific data without revealing the data itself.

In permissioned blockchain networks, auditors and regulators may be granted controlled
access to the network’s audit trail for independent review purposes. Auditors could leverage
blockchain audit trails to assess Al model compliance with data privacy regulations and
ethical standards. This dovetails with the fact that smart contracts can automate
audit-related processes (e.g. altering data owners or initiating data deletion). In Al, smart
contracts can automate compliance checks, ensuring data usage conforms to regulations
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such as automatically enforcing data retention policies, and notifying stakeholders about
data-related events.

4.4. Using blockchain to combat disinformation

At the Al For Good Global Summit in Geneva, numerous insights emerged about the profound
capabilities and concerns of generative Al models (GenAl). These models, especially with
milestones like GPT-4, have the potential to reshape countless sectors, bolster human
creativity, and be pivotal in achieving the UN's SDGs. However, unchecked advancements in
Al could amplify existing challenges surrounding disinformation. With the rapid rise of large
language models, demands for Al regulation have become increasingly vocal. It's essential
not to let overarching debates about the potential existential threats of Al divert attention
from more immediate issues, such as the proliferation of hate speech, discrimination, and
the perils of mass surveillance.

Disinformation, albeit an age-old issue, has seen its impacts amplified through social media
and advanced Al technologies. Events like the 2016 U.S. elections and the Brexit referendum
serve as poignant reminders of the erosion of trust in democracy and institutions (Bader,
2018). The capabilities of GenAl are ushering us into an era where distinguishing between real
and “synthetic” media might become exceedingly challenging, especially when such tools
are harnessed by state-sponsored entities and malicious actors, therefore more effort in
critical thinking type of education must become a priority.

Navigating content moderation in the digital age is intricate. Even harmful fabrications can
often be shielded under the banner of free speech. It's necessary to recognize the inherent
challenges in setting universally accepted standards and mechanisms to identify and
counteract disinformation, especially given the potential shortcomings of even the most
advanced automated systems. A promising avenue to achieve this is the bridge with
blockchain. Instead of fixating on imperfect detection mechanisms, a decentralized
blockchain approach could provide a more reliable means to verify sources. Utilizing
processes that do already exist in the media industry, such as forensic watermarking of
content and other types of identification of original material, additional crypto hardware
anchors in media production devices and the use of blockchain as a registry layer for
tracking all use of Al-altered or -produced content in the news press can solve many of the
issues and should become a standard (Kudelski Group. 2023).

Additionally, DAOs (Santana & Albareda, 2022)? and dApps (Goel et al.. 2022)® can help to
craft standards of trustworthiness that stand as transparent, immutable, and independent

2 Decentralized autonomous organizations (DAOs) are blockchain-based entities managed by a peer-to-peer (P2P)
network of contributors. They operate without central executive teams, using automated rules in smart contracts.
Governance is autonomous, combining on-chain and off-chain mechanisms to facilitate community
decision-making

% Decentralized Applications, or dapps, are web applications that operate on blockchain technology and
decentralized peer-to-peer (P2P) networks, rather than relying on a single server or centralized database. This
decentralized nature ensures the internet remains a public resource, accessible and controlled by many rather
than a few actors.
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of centralized control providing potential ranking on the level of trust that we can give to
data, according to the sources, collection and processes similar to how it works in DMRV
projects (Demia. 2024).

4.5. Using blockchain to improve consent management with Al models

Blockchain can be used to create a tamper-resistant and auditable record of consent. When
an individual provides consent for their data to be used in Al models, this consent is
recorded as a transaction on the blockchain and may include details such as the data
owner's identity, the specific data elements or processing activities to which consent is
granted, and the timestamp of consent. Consent transactions could be signed
cryptographically by the data owner using their private key, ensuring the authenticity of the
consent record. Moreover with Al, cryptographic signatures would verify that the consent
transaction was indeed initiated by the data owner - preventing unauthorized use of data
and ensuring that Al models are only trained or deployed with explicit, verifiable consent. The
same can be achieved through the use of verifiable credentials (VCs), where consent is
provided by an owner, while preserving their privacy.

Smart contracts or VCs can be further leveraged to automate the enforcement of consent
rules. These contracts could contain predefined conditions for data usage based on consent,
such as restrictions on the duration of consent or the specific purposes for which data can
be used. If an Al model tries to access data without valid consent or attempts to exceed the
scope of consent, the smart contract could block access and trigger notifications to relevant
parties. This works in the reverse as well.

Blockchains could record not only the granting of consent but also its revocation. When a
data owner decides to withdraw their consent, a revocation transaction could be added to the
blockchain or managed through trust revocation registries used to verify VCs authenticity
and validity. Consent revocation is critical in Al models to respect the data owner's wishes.
Blockchains could ensure that revocation is immutable, providing a clear record of when and
why consent was withdrawn. Applying blockchain to Al models can also allow for more
granular consent management. Data owners could specify precisely which data elements or
processing activities they consent to, enhancing control and transparency. It is also possible
to link consent records to corresponding data via blockchain networks, allowing for easier
data portability. In an Al context, data portability is essential to preserve the data subject’s
rights and blockchain could ensure that consent information remains connected to the data
- simplifying data transfers while preserving consent details.

4.6. Using blockchain to improve data retention and deletion with Al

It is possible to store data retention policies as smart contracts which define how long data
should be retained based on predefined criteria such as data type, sensitivity or specific legal
requirements. This process can be adopted where data retention policies for Al models are
encoded into smart contracts. Once these policies are recorded on the blockchain they
become immutable, meaning no one including the data controller can tamper with or modify
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them without leaving a clear trace. Applied to Al models, the immutability ensures that no
one with access to the model can try to manipulate the data retention policies. Moreover,
when data used in Al models reaches the end of its retention period or fulfills other
conditions, smart contracts can be deployed to automatically initiate the deletion process. In
order to bolster auditable data deletion, the transparent nature of blockchain networks
makes it easier for auditors and data subjects to gauge how data is being used and
processed. This becomes crucial when considering data processing in Al is often complex
and can span various models and systems. Additionally, as Al models evolve, data retention
policies can be adapted on the blockchain (e.g. via pointer contract) to reflect new
requirements or ethical standards while maintaining a transparent history of any policy
changes.

4.7. Combining blockchain and Al to improve data marketplace and incentives

One of the more forward-looking fusions of blockchain and artificial intelligence models is in
the sphere of data marketplaces. A blockchain-based data marketplace could serve as a
decentralized platform where data providers can securely offer their datasets, and data
consumers can access and purchase them. Such a marketplace could be extended to
artificial intelligence, allowing Al developers and organizations to acquire diverse datasets
for training and evaluation purposes while maintaining a clear record of data transactions.
By tokenizing data and transactions within the marketplace, data providers could receive
tokens in exchange for their datasets. Specific data licensing and usage terms could be
represented within the smart contracts, enabling clearly defined usage terms for data
transactions. This would put guardrails on the means of data usage by Al developers.
Blockchains can incorporate mechanisms for data validation and quality assurance, with
consensus mechanisms and oracles potentially verifying the authenticity and accuracy of
any data before it is listed in the marketplace.

As reliable data is critical for Al model training to prevent black boxes and data
decomposition, the application of distributed ledgers to data fidelity would be very helpful in
reducing the risk of training models on erroneous or malicious data sets. On-chain
reputation through Soul-Bound-Tokens (SBTs), on-chain or off-chain Verifiable Credentials
(VCs) or other reputation-based systems could help ensure trust in the data marketplace,
allowing developers to make informed decisions about data providers based on their
reputation. Data privacy could be maintained through various encryption techniques,
allowing data to be encrypted both at rest and in transit. An incentive mechanism, either
through token rewards as previously mentioned or otherwise royalties based on data usage
and/or participation in the training process for Al models could be executed via smart
contracts that automate the distribution of incentives. Smart contracts could also be used to
embed the licensing terms of data that is available to Al developers. Decentralized
Autonomous Organisations (DAOs) or other forms of on-chain governance mechanisms
could further facilitate decision-making and dispute resolution.
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However, under EU data protection law, personal data is not considered a tradable good in the
traditional economic sense. Instead, personal data is treated as a special category of
information (a non-rival good) with specific legal protections and restrictions as the above
sections have highlighted. Therefore, the introduction of a data marketplace for B2C or C2C
data would face considerable legal challenges, notwithstanding the efficiency gains borne
from harmonizing these two disruptive technologies. Creating a decentralized data
marketplace for B2B data could theoretically be possible. The EU Data Act introduces further
requirements on smart contracts used in the application of data-sharing agreements, which
a decentralised data marketplace would essentially be a constellation of. Al algorithms used
in the context of data-sharing agreements under the Data Act is an area that may garner
considerable attention from both technologists and the legal community as the legislation
enters into force.

A workaround to this would be building data marketplaces that only allow data that has
individual consent. Blockchain theoretically can allow such ecosystems where the
origination of the data starts from the individual giving consent and being rewarded for that
consent, going through to aggregated data that’s suitably anonymised and then makes its
way to a “Trusted Data Marketplace”.

4.8. zk-ML: merging zero-knowledge proofs with machine learning on Ethereum

Blockchains such as Ethereum have enabled the creation of smart contracts, expanding the
capabilities of code definition. However, the limitations of blockchain computation and the
transparent nature of blockchain operations hinder the development of compute-heavy
applications involving private or sensitive data, such as machine learning. In typical
supervised machine learning scenarios, inputs are fed into a trained model, producing
outputs that downstream entities utilize. With lightweight machine learning frameworks like
ONNX, inference can now occur on edge devices like mobile phones or IoT devices without
sending sensitive inputs to centralized servers, improving scalability and privacy.

Yet, challenges arise. There's often a need to conceal inputs and/or model parameters from
public view, especially when they contain sensitive data like personal financial or biometric
information. Additionally, downstream entities require assurance that the input was correctly
processed by the ML model to yield the claimed output. This is where ML combined with
zkSNARK protocols offers a novel solution. By utilizing zero-knowledge proofs, it becomes
possible to verify computations on private data without revealing the data itself. This
satisfies the contradictory demands of data privacy and computational verification, allowing
for secure and private execution of machine learning tasks on blockchain platforms like
Ethereum.

Consider a scenario where a consortium of healthcare institutions wants to collaboratively

train a machine learning model to predict the progression of a particular disease while
ensuring the privacy of patient data. Each institution holds a large dataset of patient records
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including demographics, medical history, lab results, and imaging scans. However, due to
privacy regulations and ethical considerations, sharing this data directly is not feasible. Each
healthcare institution encrypts its patient data using homomorphic encryption techniques,
allowing computations to be performed on the encrypted data without revealing the
underlying information. They then use zk-ML techniques to collaboratively train a
machine-learning model on the encrypted data. zk-ML ensures that the training process
remains private and that sensitive patient information is not exposed. Instead of sharing the
entire encrypted dataset, each institution generates succinct proofs, such as zk-rollups, to
provide a cryptographic summary of their data. These proofs may contain aggregate
statistics including averages, variances or gradients derived from the encrypted patient
records. By utilizing zk-rollups, the computational load is significantly reduced compared to
traditional methods as only the compact proofs need to be transmitted and verified.

Consider another example where financial institutions need to detect fraudulent
transactions while preserving the privacy of sensitive customer data. The first step could
involve encrypting customer transaction data using homomorphic encryption libraries like
SEAL or HElib, ensuring the data remains encrypted throughout the training and inference
process. Following this, machine learning algorithms supporting encrypted computation
could be used (e.g., Microsoft SEAL’s encrypted neural network library or PySyft's federated
learning framework with encrypted aggregation) to train the model on the encrypted
transaction data and discern patterns indicative of fraudulent behavior. Zero-knowledge
libraries such as libsnark or ZoKrates could be used to generate proofs demonstrating the
accuracy of the model’s predictions without revealing sensitive data or model parameters.
Deployment could involve the integration of the zk-ML model into financial institutions’
fraud detection systems where it can analyze encrypted transaction data in real-time. When a
potentially fraudulent transaction is detected the system could then generate alerts or take
action while ensuring customer privacy is maintained.

4.9. Extending neural networks to zk-proofs
A neural network is a computational model inspired by the structure and functioning of the
human brain’s interconnected neurons. It consists of a network of artificial neurons, also
known as nodes or units, organized into layers. Each neuron receives input signals, processes
them using a set of weighted connections, and produces an output signal. Neural networks
are used for various tasks including pattern recognition, classification, regression and
sequence generation among others.

A neuron (node/unit) is the basic computational unit within a neural network. It receives
input signals from other neurons or external sources, computes a weighted sum of these
inputs, applies an activation function to the sum and produces an output signal. Connection
edges link between neurons through which signals propagate. Each connection is associated
with a weight - determining the strength of influence of the input signal on the neuron's
output. Neurons within a neural network are organized into layers. There are typically three
types of layers:
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Input Layer: Receives input signals from the external environment or previous layers.
Hidden Layers: Intermediate layers between the input and output layers. They perform
complex computations by transforming input signals into meaningful
representations.

e Output Layer: Produces the final output signals of the neural network.

Weights and biases are parameters associated with connections and neurons, respectively.
Weights determine the strength of influence of input signals on neuron outputs, while biases
provide an additional adjustable parameter that helps control the neuron’s activation
threshold. Activation functions are nonlinear functions applied to the weighted sum of
inputs to introduce nonlinearity and enable the neural network to learn complex patterns and
relationships. Common activation functions include sigmoid, tanh, ReLU (Rectified Linear
Unit), and softmax. Feedforward propagation concerns the process of propagating input
signals through the neural network from the input layer to the output layer - layer by layer -
without feedback loops. It computes the output of each neuron and passes it as input to the
neurons in the subsequent layer. Backpropagation on the other hand is an optimization
algorithm used to train neural networks by adjusting the weights and biases based on the
difference between the predicted outputs and the actual outputs. It involves computing
gradients of the loss function with respect to network parameters and updating them in the
opposite direction of the gradient.

Extending the benefits of neural networks, particularly their multi-layered architecture,
within zkSNARKs poses several challenges from technical, computational, and cryptographic
perspectives. zkSNARKs are designed to prove the correctness of computations succinctly,
but they impose strict limitations on computational complexity and memory usage.
Implementing multi-layer neural networks within zkSNARKs requires optimizing
computations to fit within these constraints while maintaining the desired level of accuracy.
Additionally, neural networks often involve complex mathematical operations such as matrix
multiplications and nonlinear activation functions. Performing these operations within
zkSNARKs using homomorphic encryption techniques incurs significant computational
overhead, making it challenging to achieve efficient execution.

Designing arithmetic circuits for zkSNARKs that accurately represent the computations of
multi-layer neural networks while remaining tractable is non-trivial. The circuit complexity
increases exponentially with the number of layers and neurons, necessitating careful
optimization and abstraction. Generating zero-knowledge proofs for multi-layer neural
networks involves proving the correctness of each layer's computation while hiding sensitive
data and model parameters. Achieving this efficiently and securely requires advanced
cryptographic techniques and optimizations.

4.9.1. Implementing a layer 2 neural network within a SNARK proof
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In order to combine these technical constraints it may be necessary to implement a layer 2
(Gangwal et al, 2023)* neural network fully inside a SNARK proof. This would require
designing arithmetic circuits that represent the computations of each layer of the neural
network (including matrix multiplications, bias additions and activation functions). Efficient
data structures and algorithms would be required to minimize circuit complexity while
accurately capturing the neural network’s behavior. Fully homomorphic encryption (FHE) or
partially homomorphic encryption (PHE) could be used to perform computations on
encrypted data within the SNARK. It is important to choose encryption parameters and
algorithms that balance security and efficiency for the given application.

] Copy code

det (private field a, private field b, private field c) -> (field)

# Constraint multiplication

t Constraint addition

mul_result + ¢

# Constraint activation function
— add _result = { add_result }

output

Defining circuit constraints

Optimization techniques such as batching, parallelization, and algorithmic optimizations
could help reduce computational overhead and memory usage. This includes optimizing
matrix operations, activation functions, and other neural network primitives for efficient
execution within SNARKSs. It is also necessary to develop specific algorithms and protocols
for generating zero-knowledge proofs that demonstrate the correctness of neural network
computations while preserving privacy and confidentiality. Here, SNARK-friendly techniques
such as polynomial commitments, succinct argument systems, and efficient proof
aggregation could be employed to minimize proof generation time and size. Finally, it is

“ Layer O, Layer 1, and Layer 2 in blockchain architecture represent different layers of functionality and scalability
enhancements. Layer O includes the foundational infrastructure, such as hardware and network nodes that
support information exchange. Layer 1is the base blockchain protocol responsible for core operations like
consensus mechanisms, block validation, and transaction processing. Enhancements at Layer 1, such as
increasing block size and sharding, aim to improve scalability by modifying the fundamental protocol. Layer 2
solutions, built on top of Layer 1, address scalability without altering the underlying protocol. These solutions,
including payment channels, sidechains, and rollups, enable off-chain transactions to reduce the load on the
main chain and enhance transaction throughput while maintaining security and backward compatibility.
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necessary to implement verification procedures to validate the integrity and correctness of
zero-knowledge proofs generated by the SNARK-based neural network. This will ensure that
proofs are efficiently verifiable by third parties and resistant to attacks such as forgery or

tampering.

[C] Copy code

{private field[”] input, private field[Z][2] weights, private f:

result[i] result[il + inputl[j] * weights[i1(]];

r
L

result[i] = result[i] + biases[i];

r
L

resultfi] <
result[i] = O;

Implementing a simple neural layer with ZoKrates

zoKrates DSL is used to define the computations of a neural network layer, including the matrix
multiplication, bias addition and ReLU activation function. The generated arithmetic constraints can
then be compiled and used to generate zero-knowledge proofs - demonstrating the correctness of the
neural network layer’s computations within a SNARK.

4.10.  Proof of personhood and non-personhood
Al has reached a level of sophistication where it has started to simulate human behavior, and

that too convincingly. This makes distinguishing between Al bots and genuine human
interactions difficult, and as time continues, the problem will continue to get worse as Al
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gets smarter. This can pose significant risks, intentional and unintentional, across various
domains like digital finance, social media, customer service, and content creation.

The intentional risks are posed by bad actors that want to use Al's ability to simulate human
behavior for fraud, scams, misinformation, and market manipulation. Risks Posed by
Human-Mimicking Al

e Identity Theft and Fraud: Through the use of Al or Al bots, one could impersonate real
individuals to commit fraud, access restricted services, or manipulate online systems
designed for human users. Example impersonating individuals for phishing scams or
in web3, claiming airdrops designed for genuine human participants.

e Market Manipulation: Beyond cryptocurrency, Al can influence stock or commodity
markets through coordinated trades or spreading misleading information. Example
influencing stock markets through artificial hype.

e Misinformation and Propaganda: Automated accounts spreading fake news can sway
public opinion, disrupt elections, or incite social unrest on a massive scale.

e Trust Erosion: The difficulty in distinguishing Al from human interactions may
undermine trust in digital communications, affecting online commerce, information
reliability, and social engagement. Example Al bots might be used to create and

promote fake product reviews, or online content which may or may not be accurate.

Blockchain-based identity verification systems e.g. Verifiable Credentials (VCs) can help solve
this issue through providing proof of personhood.

VCs are a digital, cryptographically secured version of a credential and hence fraud-proof,
within reason and depending on purpose. VCs are issued by an organization (or likely an
individual) to a holder for a particular purpose. The holder of these digital credentials have
full ownership and control of the VC as well as the data within it; hence they are privacy
preserving.

The purpose of VCs, for example, can be:

An identity certificate

Holding a particular title or role in an organization
Having a particular qualification, skillset or expertise
Having attended a conference or seminar

The holder can share an entire VC or only selected data from it, offering zero knowledge
proofs, e.g. a user can prove their age or membership in a group without disclosing their birth
date or identity details.

32



VCs can in turn be used to issue Human-Only Credentials, providing proof of personhood.
However trusted entities or community consensus mechanisms would need to take on this
responsibility. These could be based on in-person verifications, biometric data checks, or
similar other methods that are challenging for Al to mimic.

This could mean easily gaining access to platforms, goods or services based on VCs and
proof of personhood, reducing the risk of bots exploiting systems designed for humans.

By leveraging blockchain for decentralized identity verification and utilizing verifiable
credentials, digital ecosystems can significantly enhance their ability to differentiate
between Al bots and genuine human users. This approach not only protects against
fraudulent activities and ensures the integrity of online interactions but also upholds privacy
and data sovereignty for individuals in the digital space.

The rapid progress in Al has also led to Al agents and bots that are increasingly taking on
roles traditionally performed by humans, on behalf of humans. We are already seeing Al
agents (such as AutoGPT) tasked with finding jobs, completing taxes, or planning trips. Very
soon, these Al agents will be able to undertake more complex operations making daily tasks
a breeze. The Al agents may need to interact not only with humans but also with Al and other
Al agents.

Bad actors would necessarily want to take advantage through, e.g. rogue Al agents or bots.
Such malicious attempts would need to be restricted by gating such rogue agents so that
only legitimate Al agents are allowed access.

Hence, the need for proof of non-personhood will emerge, in a similar fashion to that of proof
of personhood, required to identify and authorize only legitimate Al agents that perform
tasks for their human counterparts and have the authority to do so; similar to a parent
providing a letter for their child to attend a school trip, individuals could issue digital
credentials to their Al agents. These credentials would not assert personhood but rather
confirm the agent's authorized status to act on behalf of the user.

For instance, when faced with online services that block non-human users to prevent
bot-driven abuse, such as a travel booking website, a verifiable credential could serve as a
passport for Al agents. This credential would effectively communicate that while the agent is
not a person, it is operating under the explicit authorization of a legitimate account holder.
This flips the traditional verification paradigm, acknowledging the legitimacy of Al actions in
a controlled and recognized manner.

As we navigate the complexities of a digital age where Al agents increasingly act on our

behalf, the development of proof of non-personhood through verifiable credentials emerges
as a vital solution. This approach not only facilitates the seamless operation of Al agents
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within human-centric platforms but also ensures a balance between innovation and integrity
in digital interactions.

5. Ethical Social and Governance (ESG) Considerations

Ethical and regulatory concerns individuals and then we can talk about the convergence.
Recent regulatory documents and discussions, such as the EU Al Act, have introduced the
need to develop Al applications that are responsible, that is, that can measure the risks they
generate and, therefore, manage them, in line with the stakeholders’ risk appetites. In other
words, organizations that provide or develop Al systems should accompany them with an
appropriate Al risk management model, that can help organizations to measure, manage and
mitigate risks, throughout the whole Al lifecycle, from use case design to continuous
monitoring in production. For more details see, for example, the paper by Giudici & Raffinetti
(2022)., who propose a risk management system built upon four S.A.F.E. principles:
Sustainability, Accuracy, Fairness and Explainability. For each principle, they propose metrics
that can be employed in practical use cases for Al risk management. As mentioned in Section
4, blockchain technology offers significant potential benefits for Al. It can increase the
trustworthiness of Al decisions, improve the quality of data used in Al systems, expand the
capabilities of Al, and create additional value by enabling individuals to contribute their data
to model training as part of a data economics model. Implementing these mechanisms at a
societal level raises ethical and practical concerns that go beyond considerations like public
readiness, educational levels, and industrial preparedness. Most notably, it involves
assessing the readiness of law enforcement across political boundaries to regulate and
prevent potential issues arising from the convergence of the emergence of Al and Blockchain.

Blockchain and digital ledger technologies enable programs to function as independent
non-human entities that interact with human individuals and organizational entities. These
technologies, being automated and devoid of consciousness, operate according to
predefined rules and cannot adapt to unforeseen circumstances.

5.1. Governance and Voting Assistance:

Al can assist by providing educational resources and information to voters. Chatbots and
Al-driven interfaces can answer questions about proposals, voting mechanisms and
governance protocols. Al could be leveraged to assess the potential impact of governance
proposals by considering historical data and community feedback, allowing it to estimate
the economic and technical implications of the proposal. By aggregating and summarizing
community feedback on governance proposals from various sources (e.g. social media,
forums and chats), Al can help provide voters with a concise overview of the arguments
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for/against proposals, making it easier to assess community sentiment. Additionally,
Al-powered dashboards can track the progress of governance proposals, including the
number of votes cast, quorum reached and voting trends.

Prediction markets are another opportunity where DeFi can leverage artificial intelligence.
Prediction markets allow users to speculate on the outcomes of governance proposals,
allowing voters to gauge community expectations and make more informed voting decisions.
Al-driven smart contracts can be further used to automate the execution of governance
proposals, reducing administrative burden on token holders. One of the more important
implications of Al on DeFi is the means to ensure voter identity verification to prevent
fraudulent votes while maintaining user privacy. In such cases, Al can be used to ensure only
eligible token holders participate in governance votes.

5.2. Trust and Adoption

Both artificial intelligence and blockchain technology rely on the social dimension of trust in
order to increase adoption via network effects. The more a technological substrate is trusted
by potential users, the greater the likelihood that it will scale concomitantly. By the same
token, if a technology proves to be insufficient in meeting the needs and expectations of
users, it faces hurdles in its widespread adoption. If one applies the social contract theory of
Jean-Jacques Rousseau, it posits that individuals willingly enter into a social contract,
surrendering certain aspects of their natural freedom in exchange for collective benefits and
security derived from a just government. Applying this perspective to the amalgam of Al and
blockchain technology, the decentralized and transparent ethos of blockchain becomes a
digitized reflection of the social contract. Participants engaging in blockchain networks
effectively form a digital societal structure where they collectively agree to operate within a
system characterized by transparency, immutability and decentralization. In a parallel to
Rousseau's social contract - these participants entrust their data and transactions to the
blockchain, placing reliance on the system's inherent integrity and transparency to foster a
sense of collective trust. Within this context, the blockchain serves as a digital governance
structure, where the immutability and transparency of recorded transactions function as the
foundational pillars of trust. The distributed ledger (embodying the principles of Rousseau’s
just governance) offers participants a verifiable and auditable record of all interactions
within the network. In effect, a web of trust through blockchain becomes the bedrock for
artificial intelligence. The introduction of Al algorithms underscores the need for the
preservation of ethical standards. Conversely, the transparency inherent in blockchain serves
as a safeguard - enabling stakeholders to audit and assess the ethical implications of Al
decisions, ensuring they align with a collectively agreed-upon set of ethical standards.

From an economic perspective, the decentralized nature of blockchain networks and the
programmable logic of smart contracts set the stage for participants to engage in strategic
interactions with predefined rules - following the game theoretic logic of John Nash. This
dynamic equilibrium mirrors the foundational ideas from Friedrich Hayek's market process
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theory, where blockchain facilitates secure, transparent and automated transactions -
aligning towards an efficient market mechanism. Moreover, integrating Al with blockchain
introduces optimization mechanisms aligned with the bounded rationality of Herbert Simon.
Al's ability to optimize decision-making processes and automate intricate tasks enhances
economic efficiency within a decentralized setting. As participants engage in self-interested
actions within the blockchain's predefined rules, the resulting synergy also exemplifies
principles of market-oriented economies - resonating with the theoretical underpinnings of
scholars like Milton Friedman.

Taken together, merging the social and economic benefits of artificial intelligence and
blockchain hinges on the establishment of transparent, ethical and accountable frameworks.
Transparency ensures that the processes and decision-making algorithms used in Al models
are understandable and auditable. Ethical considerations must uphold both the normative
and legal axioms that govern our body politic, while accountability mechanisms must be in
place to address unintended consequences and ensure responsible behavior.

5.3. Education and Literacy

The integration of Al and blockchain into educational programs at all levels, from schools to
universities and executive education courses, is becoming increasingly essential in today's
rapidly evolving digital landscape. As technologies continue to reshape societal structures
and industries, there arises a critical need for individuals to develop a comprehensive
understanding of their capabilities, challenges, implications, and ethical considerations.
Therefore, new educational courses tailored to Al and blockchain are essential to equip
learners with the necessary skills and knowledge to navigate and thrive in the digital age
(Eomin et al. 2024).

At the core of these educational initiatives lies the recognition of the interdisciplinary nature
of Al and blockchain (Dudder et al. 2019). These technologies intersect with various fields,
including computer science, information systems, economics, supply chain management,
law, ethics, and sociology, among others. Hence, fostering an interdisciplinary understanding
and cooperation becomes imperative. This is reinforced by the fact that various
organizational functions and departments have to be involved in industry implementation
projects. Only by integrating diverse perspectives and expertise, individuals can better
comprehend the multifaceted challenges and leverage opportunities presented by Al and
blockchain, as well as devise holistic solutions that address complex real-world problems
effectively (Glrpinar et al. 2024; Didder et al. 2021).

In educational settings, interdisciplinary courses that combine Al and blockchain curricula
can provide students with a comprehensive understanding of both technologies' technical
aspects, applications, and societal impacts (Dudder et al. 2021). Moreover, emphasizing
interdisciplinary cooperation cultivates collaborative problem-solving skills, encouraging
learners to work across disciplinary boundaries to tackle multifaceted challenges effectively.
Such collaborative experiences not only enrich learning experiences but also mirror
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real-world scenarios where professionals from diverse backgrounds must collaborate to
innovate and address complex issues.

Furthermore, instilling an ethical framework within Al and blockchain education is crucial. As
these technologies exert significant influence on society, learners must develop a deep
appreciation for ethical considerations, such as data privacy, algorithmic bias, and
transparency. By integrating ethical discussions and case studies into educational curricula,
students and professionals need to learn to approach Al and blockchain development and
deployment with mindfulness and responsibility, thus contributing to the creation of a more
ethical and equitable digital future.

5.4. Acceptable economic models

What makes an economic model acceptable and what matters more, ethical considerations
or efficiency gains? In dealing with Al-driven economic models it would follow that both in
equal measure necessitate careful consideration. On the one hand, an acceptable economic
model should align with ethical frameworks that prioritize fairness, transparency and the
well-being of individuals within society. Philosophers like John Rawls (1958), with his concept
of ‘justice as fairness, emphasize the importance of minimizing social and economic
inequalities to create a just and equitable society. Applying this maxim to Al-driven
economic models entails ensuring that the benefits and risks are distributed fairly among all
stakeholders. For example, Al algorithms in hiring processes can be designed to mitigate
biases, ensuring that opportunities are accessible to diverse candidates based on merit
rather than perpetuating systemic inequalities. Yet Al models trained on datasets may
perpetuate and even exacerbate existing social biases - leading to discriminatory outcomes
such as in the criminal justice system. In healthcare, Al-powered diagnostic tools, when
designed with ethical considerations, can enhance medical accuracy, speed up diagnoses,
and improve treatment outcomes, thereby upholding individuals' right to quality healthcare.
In another vertical, the use of Al in surveillance systems may exacerbate privacy challenges.
Facial recognition technologies employed by governments may infringe on individuals’ right
to privacy, prompting ethical debates around the balance between security and personal
freedoms.

Economically speaking, Al has the potential to unleash a new frontier of human flourishing,
by taking over remedial and monotonous tasks, freeing up precious time for human beings
to engage in more creative and self-fulfilling pursuits. It could also lead to dystopian
outcomes by rendering humans obsolete while the social safety nets designed to absorb less
productive human economic output struggle to keep pace with the employment
displacement. This could exacerbate social tensions and put pressure on governments’
social and fiscal policies. Taking a neoclassical economic approach, an economical model
should leverage Al to optimize decision-making processes, enhance productivity and
contribute to overall economic growth. The model should also align with principles of
innovation, encouraging the development of cutting-edge technologies to foster economic
progress. For example, using Al-driven predictive analytics to minimize waste, reduce costs

37



and enhance operational efficiency in industrial supply chains, or using Al-powered robots to
develop new products, improve production processes and increase productivity in the
manufacturing sector. Left unchecked, this may also lead to concentrations of economic
power, particularly by corporations with substantial resources. These entities can leverage Al
to enhance market dominance, creating barriers to entry for smaller competitors. This
concentration raises concerns about fair competition, limiting innovation and potentially
stifling market diversity. In the tech industry, major players deploying advanced Al
algorithms for services like search engines, social media platforms and e-commerce have
amassed significant control over user data and market access. This dominance allows them
to influence user behaviors and preferences, creating challenges for smaller companies to
compete on an equal footing.

This is also because the integration of Al into business operations often involves substantial
initial costs. Companies need to invest in advanced hardware, software and skilled personnel
to develop and implement Al solutions. For smaller enterprises, these upfront expenses can
act as a deterrent thereby hindering their ability to adopt Al and remain competitive. Building
on the manufacturing example above, SMEs in manufacturing face challenges in
implementing Al-powered automation due to the high costs associated with retrofitting
existing systems or acquiring new technology. This initial financial barrier can impede their
ability to leverage Al for efficiency gains and innovation, potentially leading to a technological
divide in the business landscape. It is also the case that many incumbents especially in the
Google, Amazon, Facebook, Microsoft ‘GAFAM’ category have been working on Al tooling for
years. The economic moat built around their business models, coupled with their
considerable market share almost guarantees their continued dominance with the rollout of
Al in their product suite.

e Using blockchain to curb perverse instantiation with Al in Proof of Stake (PoS)
Consensus

In a PoS blockchain system, validators propose and vote on new blocks and form a
consensus on (come to a decision about) canonical blocks - these are the blocks that the
network considers "valid’ - based on the amount of crypto assets they hold and are willing to
‘stake’ as collateral. In the context of Al governance, validators may need to stake additional
tokens as insurance against potential Al misbehavior. This incentivizes validators to
diligently monitor Al activities and intervene if necessary to prevent harmful actions.
Slashing penalties (risk of losing staked crypto-assets) act as an additional deterrent
against the negligence of collusion among validators regarding Al governance. Moreover,
smart contracts can define the rules and parameters governing Al behavior, including
permissible actions, constraints, and thresholds for intervention. These contracts may codify
ethical guidelines, legal requirements, and safety protocols that Al agents must adhere to.
Smart contracts can further integrate with external monitoring systems and oracles to
continuously assess Al performance and detect deviations from established norms. If an Al
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agent exhibits signs of perverse instantiation or harmful behavior, predefined triggers within
the smart contract can initiate corrective measures or alert human operators.

Smart contracts can facilitate decentralized decision-making processes for Al governance,
allowing stakeholders to collectively determine policies, update parameters, and resolve
disputes. This ensures transparency, accountability, and consensus among participants in
the blockchain network. They can also escrow funds or tokens as incentives for Al agents to
comply with specified objectives or penalties for non-compliance. In cases of dispute or
disagreement, smart contracts can trigger arbitration mechanisms to resolve conflicts fairly
and efficiently.

e Al rulemaking and economic governance

In a recent article, Ethereum co-founder Vitalik Buterin outlined his optimism and concerns
around the implementation of Al-based rule-making and economic governance within
blockchain-based systems (Vitalik, 2024). He argues that combining crypto and Al can lead
to the creation of a singleton”: a single decentralized trusted Al that some application would
rely on for some purpose. This has promise for improving Al safety in a way that avoids the
centralization risks associated with more mainstream approaches to that problem. However,
there are also many ways in which the underlying assumptions could fail, so it is important
to tread carefully when deploying these applications in high-value and high-risk contexts. He
also argues that cryptographic and blockchain-based techniques can be used to incentivize
making better Al without completely encrypting it. For example, prediction markets can be
used to incentivize Als to make good predictions on a wide range of questions. Als are willing
to work for less than $1 per hour, and have the knowledge of an encyclopedia - and if that's
not enough, they can even be integrated with real-time web search capability. By making
prediction markets work on a microscopic scale, it is possible to reuse the “prediction
market” primitive for many other kinds of questions.

Yet he also underscores the fundamental issue of scaling Al-based decision making, for
example within the context of DAOs. The first is cryptographic overhead. Buterin argues that
cryptographic tools, particularly versatile ones like ZK-SNARKs and MPC come with
substantial computational overhead. While an Ethereum block can be verified by a clientin a
few hundred milliseconds, generating a SNARK to validate the correctness of such a block
can take hours. The overhead of other cryptographic gadgets, such as MPC can be even more
pronounced. He further explains that Al computation is already resource-intensive with the
state-of-the-art language models (LLMs) only generating words slightly faster than human
reading speed. The associated costs of training these models are often in the multi-million
dollar range. In this regard, the significant disparity in quality between high-end models and
those attempting to economize training costs raises legitimate concerns about the
feasibility and efficacy of enhancing Al with cryptographic guarantees.

39



The second concern is what is known as adversarial machine learning which involves
manipulating Al models by introducing carefully crafted inputs to deceive or mislead the
system. This can be done by adding small perturbations to the input data that are
imperceptible to humans but can cause the Al model to make incorrect predictions or
decisions. Buterin argues that if an Al model used as part of the game rules is closed
(meaning its inner workings are not transparent or verifiable), it can be vulnerable to
adversarial attacks. On the other hand, if the Al model is open, attackers could potentially
exploit its vulnerabilities by simulating and optimizing attacks offline before deploying them
in the live network. An example includes when a user has access to an Al assistant within an
open-source wallet. In this scenario, the inherent risk is that malicious actors could exploit
the same Al assistant presenting a potential avenue to refine and optimize scams without
triggering the wallet’s defenses. Given that all modern Al has vulnerabilities, a training
process even with limited access to the model can uncover these weaknesses. Contrasting
this with the concept of ‘Als participating in on-chain micro-markets’ and extending the
prediction market analogy above, the approach proves more resilient. In this framework,
numerous Als operate within an open ecosystem each susceptible to similar risks but
intentionally fostering a collaborative environment. The security of the system relies on the
openness of the rules of the game rather than the internal workings of individual Als,
enhancing overall robustness against adversarial threats.

5.5. Global Collaboration

As with the myriad disruptions facing the world today, effectively managing the deployment
and optimization of Al and blockchain-based business models cannot be effectuated in a
political vacuum. It will require coordination and cooperation on a planetary scale, involving
multilateral institutions and fora, and governments and the national, regional and local level.
It will also require buy-in from the general population whose questions and concerns need to
be addressed in a way that doesn’t undermine the fundamental rights of human beings
including the right to work, be free from unjust persecution and move freely without threats
to their privacy. Recent months have seen significant strides in shaping the regulatory
landscape for artificial intelligence on global and regional scales. Two landmark examples of
these regulatory efforts are the UN Al Resolution and the EU Al Act, each setting
comprehensive standards and guidelines for the responsible development and application of
Al technologies.

The UN Al Resolution sets out guidelines for the development and use of artificial
intelligence, aligning it with human rights and international laws. The resolution emphasizes
the importance of creating Al technologies that are safe, reliable, and beneficial, particularly
in promoting social and sustainable impacts globally. It also highlights the need to bridge
the technological divide between developed and developing countries and supports the
achievement of the UN SDGs. The resolution advocates for Al to be a tool for good,
contributing positively to societal challenges while being developed and used responsibly.
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The EU Al Act introduces a regulatory framework for artificial intelligence, categorizing Al
systems based on their risk level. The act specifies that high-risk Al applications, such as
those used for personal scoring systems, are strictly regulated or outright banned to prevent
potential misuse. This approach is part of the EU's broader effort to ensure that Al
technologies are developed and deployed in a manner that is safe, ethical, and respects
fundamental rights, aiming to mitigate risks associated with Al and enhance user trust and
safety.

Moreover, the international Telecommunication Union (ITU) - a specialized UN agency - has
been actively engaged in discussions related to Al, especially in the context of information
and communication technologies. The United Nations Educational, Scientific and Cultural
Organization (UNESCO) has also shown interest in the ethical implications of Al, particularly
concerning education and culture. Moreover the UN General Assembly and UN Economic and
Social Council (ECOSOC) periodically discuss and address issues related to Al, emerging
technologies and their impact on society. Global central banks, including the Bank for
International Settlements (BIS) are further actively exploring the impact of Al on financial
markets and cyber resilience. National governments, including the United States and China
are actively exploring their own Al strategies designed to elevate the technology to a national
economic and security imperative.

Furthermore, in February 2024, the Internet Governance Forum (IGF) of the United Nations
spotlighted Artificial Intelligence in its Programme Development, demonstrating a
significant focus on Al during the IGF 2024 Call for Thematic Inputs. This call engaged over
310 stakeholders in a comprehensive discussion during eight weeks, using an online
submission system that allowed participants to choose up to three themes and associated
issues from a list of eleven predefined categories. This inclusive initiative garnered 824
selections for themes and 1,549 for specific issues, highlighting the global community's
engagement and interest in shaping the future of internet governance with respect to
emerging technologies. Al emerged as a notable focus, capturing 17% of the mentions within
the selected themes. Discussions on Al centered around several critical areas: Al ethics led
with 30%, followed by Al governance at 24%, Al risks at 16%, Al and data at 14%, and Al
applications and solutions at 9%. The smallest focus was on Al design and development,
which accounted for 7% of the discussions. This outcome underlines the pressing need for
ethical frameworks, governance standards, and risk management strategies in the
development and implementation of Al technologies, aligning with global efforts to harness
Al's potential responsibly.

To bring about a more coordinated global approach, it would be pertinent to consider the
establishment of a specialized task force under the UN to focus on the ethical implications
of Al and blockchain convergence, promoting collaboration among member states and
stakeholders. This could feed into a wider Global Digital Cooperation Framework that
guidelines for responsible Al and blockchain deployment across borders. At G20 level, it
would be beneficial to further establish a permanent working group focused on emerging
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technologies, including Al and blockchain to foster collaboration, share best practices and
harmonize policies. This could be paired with a G20 Initiative for Ethical Al - aiming to create
a unified ethical framework that member states can adopt in their national policies.

International standards organizations also have a role to play. Dedicated committees within
the International Standards Organisation (ISO) and International Electrotechnical
Commission (IEC) dealing with frameworks addressing interoperability, security, and ethical
considerations in Al and blockchain technologies would support multilateral initiatives. The
Internet Governance Forum (IGF) could organize thematic tracks and workshops specifically
focused on Al and blockchain, encouraging open discussions and knowledge-sharing. The IGF
could also establish a working group to create a set of best practices for the responsible use
of Al and blockchain in the digital era. National governments should collaborate to share best
practices and lessons learned in the development of policies related to Al and blockchain
while encouraging the formation of national Al and blockchain advisory boards comprising
experts from various domains. Regional bodies such as the European Union are already
moving ahead with cross-border initiatives such as the landmark Al Act to harmonize
regulations and provide an environment addressing ethical considerations while promoting
innovation. Europe is already moving forward with different sandboxes for blockchain
technology such as the European Blockchain Sandbox, while prioritizing funding for
emerging technology including blockchain and Al through equity and non-equity based
financing through the European Innovation Council (EIC).

Additionally, there are national security implications to consider, especially when discussing
the impact of Al on global governance. The information age can potentially create tension
between great powers where control of the resources (in this case rare earth metals) needed
for chip manufacturing and technical know-how to design super-sophisticated Al systems
risks a myopic race to the bottom ending in a zero-sum game. In the context of Al
development, governments increasingly operate within a complex game theoretic landscape
where the sharing of information is a strategic decision. The underlying dynamics are
influenced by factors such as competition for technological advantage, national security
concerns, and economic interests. Governments view Al capabilities as a strategic asset
leading to a competitive dynamic where withholding information becomes rational. Sharing
key insights or breakthroughs might erode a nation's competitive advantage in the global Al
landscape. Following this, governments often perceive Al advancements as integral to
national security. Disclosing detailed information might expose vulnerabilities or reveal the
extent of a nation's capabilities, potentially compromising security. Additionally, the
economic benefits associated with Al innovation contribute to the incentive for governments
to prioritize their domestic industries. Limiting information sharing helps maintain a
favorable economic position.

e Nash equilibrium challenges
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Globally, achieving a Nash equilibrium (where no single government has an incentive to
unilaterally deviate from its strategy) is challenging due to a lack of trust. Governments are
skeptical that others will reciprocate information sharing. Governments may have
asymmetric information about the true capabilities and intentions of other nations in the Al
race. The rapidly evolving nature of Al technologies also introduces uncertainty and
governments may be hesitant to commit to long-term cooperation when the strategic
landscape can change quickly, disrupting equilibrium. In a zero-sum situation where one
nation’s gain is perceived as another’s loss, the lack of global collaboration can lead to
suboptimal outcomes for humanity. Governments, acting in isolation may duplicate research
and development efforts, resulting in inefficient allocation of resources. This duplication can
slow down overall progress and limit the potential benefits of shared knowledge. Without
international cooperation, Al development may follow divergent paths resulting in
fragmented solutions and standards. Interoperability challenges and lack of harmonization
could hinder the seamless integration of Al technologies on a global scale. One of the more
alarming outcomes is the lack of ethical concerns when a collaborative approach is absent
at an international level. Governments pursuing the development of Al technology for
divergent purposes in isolation from each other may lead to the development of Al systems
with varying ethical standards and principles. In an extreme case it could lead to the
development of Al systems with little or no ethical safeguards, posing an existential threat to
the planet.

It is therefore paramount that the discussion and application of Al and blockchain take
shape at an international level, and with a waterfall effect towards all national and regional
stakeholders, private industry and global citizens. The ramifications of operating in a black
box environment are big enough that it merits an unwavering commitment to transparency,
fairness, collaboration and a human-centric approach to the development and
implementation of these technologies. A firm commitment to such an approach is the first
step to avoiding a zero-sum outcome.

6. Conclusion: The Road Ahead: Future Prospects

The convergence of Al and blockchain represents a pivotal shift towards creating more
ethical, transparent, and effective technological solutions. By leveraging the unique
strengths of each technology, we can address some of the most pressing challenges faced by
digital innovations today, including concerns around privacy, security, and ethical
decision-making.

Al brings unparalleled capabilities in data processing, pattern recognition, and predictive
analytics - driving efficiency and innovation across various sectors. However, its challenges,
such as the potential for bias, lack of transparency, and privacy issues underscore the need
for a complementary solution. Blockchain, with its decentralized nature, immutability, and
secure data management, offers the perfect counterbalance to Al's limitations. It ensures
transparency, enhances data security and empowers users with control over their
information.
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Together, Al and blockchain are not just transforming industries but are also setting new
standards for ethical technology development. Their integration fosters a more accountable
and trustworthy digital ecosystem, where decisions are not only data-driven but also socially
responsible and aligned with ethical standards.

Furthermore, a historical parallel can be very useful in understanding the potential of this
combination. Also in the history of the Internet, it was the convergence between this and
various technologies, such as smartphones, social networks and big data, that bequeathed
the great social transformations we are experiencing today. Swap “Internet” for “blockchain”
and we have a good chance of seeing a similar development in the coming years and
decades. And, even if development is not as rapid as imagined (lansiti & Lakhani. 2017), the
transformational power of foundational technologies is immense.

However, global institutions and national governments must work in concert with each other
to mitigate fragmentation risks and ensure the inputs to algorithms used to develop Al
models are complementary to human flourishing. The road to global coordination for
blockchain standards and regulatory treatment is far more advanced and the same approach
should be applied to Al.

As we look to the future, the synergy between Al and blockchain holds the key to unlocking
sustainable technological advancements. Emerging trends such as decentralized finance,
smart healthcare, and automated governance systems show promising applications. We
encourage stakeholders in the Al and blockchain ecosystems to come together, leveraging
their collective expertise to tackle the challenges and harness the opportunities discussed
throughout this report.

As we look to the future, the synergy between Al and blockchain holds the key to unlocking
sustainable technological advancements. It encourages us to reimagine the possibilities of
digital innovation, grounded in the principles of fairness, transparency, and inclusivity. This
journey towards integrating Al and blockchain not only propels us towards technological
excellence but also ensures that our advancements contribute positively to society and the
environment.
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