Machine Learning A comprehensive overview Marcel van Velzen Junior Marte Garcia ### **Definition** Machine learning is a branch of artificial intelligence (AI) and computer science which focuses on the use of data and algorithms to imitate the way that humans learn, gradually improving its accuracy. # **Applications** ## **Math topics** # ML Lifecycle process ## CRISP-ML(Q) ### Phases **Business and Data Understanding** **Data Engineering (Data Preparation)** **Machine Learning Model Engineering** **Quality Assurance for Machine Learning Applications** **Deployment** **Monitoring and Maintenance** # Tasks | Business and Data Understanding | - Define business objectives - Translate business objectives into ML objectives - Collect and verify data - Assess the project feasibility - Create POC | |----------------------------------|---| | Data Engineering | Feature selection Data selection Class balancing Cleaning data (noise reduction, data imputation) Feature engineering (data construction) Data augmentation Data standartization | | ML Model Engineering | Define quality measure of the model ML algorithm selection (baseline selection) Adding domain knowledge to specialize the model Model training Optional: applying trainsfer learning (using pre-trained models) Model compression Ensemble learning Documenting the ML model and experiments | | ML Model Evaluation | Validate model's performance Determine robustess Increase model's explainability Make a decision whether to deploy the model Document the evaluation phase | | Model Deployment | - Evaluate model under production condition - Assure user acceptance and usability - Model governance - Deploy according to the selected strategy (A/B testing, multi-armed bandits) | | Model Monitoring and Maintenance | - Monitor the efficiency and efficacy of the model prediction serving - Compare to the previously specified success criteria (thresholds) - Retrain model if required - Collect new data - Perform labelling of the new data points - Repeat tasks from the *Model Engineering* and *Model Evaluation* phases - Continuous, integration, training, and deployment of the model | # ML Data Engineering ### **Characteristics of data** ### Data in the real world is dirty - Incomplete lacking attributes values, attributes of interest or only containing aggregate data - Noisy containing errors or outliers - ☐ Inconsistent containing discrepancies in codes or names ### No quality data means no quality results Quality decisions can only be based on quality data ### Tasks - Data duplication removal of duplicated observations - Dimensionality reduction find projection that captures observations - ☐ Encoding transform data so that it can be consumed by the modeling methods - ☐ Missing data delete, estimate, ignore and replace observations - Noise reduction remove unwanted or clean up polluted observations - Outliers identifying observations that do not fit the others - ☐ Feature selection remove redundant or irrelevant attributes - □ **Sampling** find a representative subset - ☐ Transformation map attribute values/objects into a single attribute value/object # **Encoding** #### Nominal | Color | | |--------|--| | Red | | | Red | | | Yellow | | | Green | | | Yellow | | #### **Cyclical continuous** #### **Ordinal** | Original Encoding | Ordinal Encoding | |-------------------|------------------| | Poor | 1 | | Good | 2 | | Very Good | 3 | | Excellent | 4 | ### **Data imputation** Missing data - data is not always available - ☐ Ignore the subject - ☐ Fill in the missing value manually or use a global constant - ☐ Use the attribute mean to fill in the missing value - ☐ Use the attribute mean for all subjects of the same class - ☐ Predict the missing value with the most probable value ## **Noise reduction** **Binning** **Filters** **Moving averages** ### Signal processing | | Smoothness | Responsive | Score | |-----------|------------|------------|-------| | KAMA | 5 | 6 | 11 | | VIDYA | 6 | 5 | 11 | | MAMA | 7 | 1 | 8 | | Ehlers | 1 | 3 | 4 | | Median | 8 | 7 | 15 | | Median-MA | 4 | 8 | 12 | | FRAMA | 2 | 4 | 6 | | Laguerre | 3 | 2 | 5 | **Filters** are designed to selectively modify or extract specific frequency components from a signal while attenuating others **Low-pass filter:** Allows low-frequency components to pass through while attenuating higher frequencies. It is useful for removing high-frequency noise or extracting the slow-changing trends from a signal. **High-pass filter:** Allows high-frequency components to pass through while attenuating lower frequencies. It is used to remove low-frequency noise or isolate fast-changing features in a signal. **Band-pass filter:** Allows a specific range of frequencies to pass through while attenuating others. It is employed when you want to isolate a specific band of frequencies from a signal. **Notch filter:** Attenuates a narrow band of frequencies, often used to remove specific interference or noise components. Different filter designs may be suitable for different scenarios. ### **Moving averages** $$SMA_{n} = \frac{\sum_{i=1}^{n} close_{i}}{n}$$ $$WMA_{t+1} = \frac{\sum_{i=t-n}^{t} (x_i * w_i)}{\sum_{i=1}^{n} w_i}$$ $$EMA_n = \alpha * close_n + (1 - \alpha) * EMA_{n-1}, \alpha = \frac{2}{n+1}$$ Triple Exponential Moving Average (TEMA) = $(3 * EMA_1) - (3 * EMA_2) + EMA_3$ Moving averages are a form of smoothing technique that calculates the average of a subset of adjacent data points within a time series. A "window" or "kernel" of fixed size moves along the data, and the average value within the window is computed at each position. **Noise reduction:** By averaging out nearby data points, moving averages can suppress high-frequency noise or fluctuations, resulting in a smoother representation of the underlying signal. **Trend and momentum analysis:** Moving averages can help identify trends, momentum and patterns in data by smoothing out short- and longer-term fluctuations. Different types of moving averages, such as simple moving averages (SMA), weighted moving averages (WMA), and exponential moving averages (EMA), provide varying emphasis on recent versus older data points. **Forecasting:** Moving averages can be used to generate predictions or forecasts by extrapolating the smoothed trend. They are often employed in time series analysis and financial markets to make short-term predictions. Different window sizes may be suitable for different scenarios. ## **Outlier detection** # Sampling **Random sampling** Stratified sampling ### **Normalization and Standardization** $$z = \frac{x - min(x)}{[max(x) - min(x)]}$$ $$z = \frac{x - mean(x)}{stdev(x)}$$ $$z = \frac{1}{1 + \exp(-x)}$$ # ML Model Engineering ### **Supervised Learning** **Regression** – assessing the relationship between traits in the data and calculates how much a variable changes when any other variables change Classification – identify new occurrences which category it belongs to based on known observations **Time series –** predicting future values based on historical data ### **Unsupervised Learning** **Outlier detection –** detecting occurrences which fall outside the norm **Association rules –** searching and identifying dependencies, relationships or orders between features in the data **Clustering –** grouping occurrences which have common properties **Sentiment analysis –** measuring of the sentiment **Dimensionality reduction –** compresses the data that encapsulates the original data ## **Reinforcement Learning** ### Typical RL scenario ### Learning The analysis of data for discovering meaningful new correlations, patterns and trends by building models (representations of reality) using machine learning (statistical or artificial intelligence) techniques. # MLAIgorithms ### **Dimensionality reduction** #### PCA: component axes that maximize the variance #### LDA: maximizing the component axes for class-separation Principal Component Analysis (PCA) is an unsupervised learning technique that aims to maximize the variance of the data along the principal components Linear discriminant analysis (LDA) is a supervised learning technique that aims to maximize the separation between different classes in the data - □ PCA is unsupervised and focuses on maximizing variance, while LDA is supervised and focuses on maximizing class separation - ☐ PCA doesn't require labeled data, but LDA does - □ PCA reduces dimensionality by projecting data onto a lower-dimensional space, while LDA creates linear combinations of features - □ PCA outputs principal components that capture variation, while LDA outputs discriminant functions that separate classes - □ PCA is commonly used for exploratory data analysis, while LDA is often used for classification tasks - □ PCA is generally faster and more computationally efficient, but LDA may be more effective with labeled data # **Linear Regression** **Linear regression** is a statistical technique that models the relationship between a dependent variable and one or more independent variables by fitting a straight line to the data | Benefits | Drawbacks | |--|---| | works well when there are linear relationships between the variables in your dataset | performs poorly when there are non-linear relationships | | straightforward to understand and explain | often outclassed by its regularized counterparts | | can be updated easily with new data | | ## **Logistic Regression** Logistic regression is a statistical technique used to model the relationship between a binary dependent variable and one or more independent variables by estimating the probability of the dependent variable belonging to a certain category | Benefits | Drawbacks | |---|--| | easy to implement, interpret, and efficient in training | may lead to overfitting if the number of observations is fewer than the number of features | | flexible and does not assume specific class distributions | constructs linear boundaries and assumes linearity between the dependent and independent variables | | can handle multiple classes and provides a probabilistic view of predictions | limited to predicting discrete functions and is not suitable for non-linear problems | | measures predictor importance and direction of association | requires low or no multicollinearity among independent variables | | quickly classifies unknown records and performs well with linearly separable datasets | may struggle to capture complex relationships | ### **Decision Tree** A **decision tree** in machine learning is a hierarchical model that uses a sequence of binary splits based on input features to make predictions or classify data | Benefits | Drawbacks | |---|--| | require less effort for data preparation during pre-processing compared to other algorithms | prone to instability | | normalization of data is not necessary | calculation more complex | | scaling of data is not required | higher training time | | missing values in the data have minimal impact | relatively expensive | | decision tree is intuitive and easy to explain | primarily designed for predicting discrete or categorical values rather than continuous values | ### **Random Forest** Random Forest combines the output of multiple decision trees to reach a single result to make predictions or classify data | Benefits | Drawbacks | |---------------------------------|-----------------------------| | Versatile and easy to use | Computationally demanding | | Handles high-dimensional spaces | Model interpretability | | Feature importance | Overcomplexity | | Robust to overfitting | Bias in multiclass problems | | Out-of-box predictor | Lack of precision | # **Apriori algorithm** The **Apriori algorithm** finds frequent patterns and associations in a transactional dataset | Benefits | Drawbacks | |--|---------------------------------------| | Simplicity and ease of implementation | Computational complexity | | The rules are human-readable | Difficulty handling sparse data | | Flexible and customisable | Limited discovery of complex patterns | | The algorithm is widely used and studied | Bias of minimum support threshold | | | Inability to handle numeric data | ### **Neural network** A **neural network** in machine learning is a computational model inspired by the structure and function of the human brain, composed of interconnected nodes or "neurons" that process and transmit information to make predictions or classify data | Benefits | Drawbacks | |--|---| | have several advantages over traditional algorithms | complex and require a significant amount of data to train | | can learn from data and tackle complex problems | overfitting is a concern | | can generalize and identify patterns that traditional algorithms may miss | lack interpretability | | particularly useful for tasks like image recognition and natural language processing | less suited for reasoning or decision-making | | are efficient at processing large amounts of data with speed and accuracy | lack explanatory capabilities | ## **K-Nearest Neighbor** The **k-nearest neighbor** algorithm is a machine learning algorithm that classifies new data points based on the majority vote of their k nearest neighbors in the training data | Benefits | Drawbacks | |---|-----------------------------------| | simple to implement | needs to determine the value of k | | robust to the noisy training data | computation cost is high | | can be more effective if the training data is large | | # K-Means The **K-means** algorithm is a clustering technique that aims to partition data points into k distinct clusters based on their similarity, where each data point is assigned to the cluster with the nearest mean value | Benefits | Drawbacks | |---|--| | relatively easy to implement and apply | determining the optimal value of k | | can handle large datasets effectively | dependence on initial values can impact the results of k-means clustering | | guarantees convergence to a final solution | clustering data with varying sizes and density can be challenging | | allows for warm-starting, initializing centroids with predefined positions | outliers can affect the clustering results | | can easily adapt to new examples and generalize to clusters of different shapes and sizes | scalability of k-means is influenced by the number of dimensions in the data | ### **DBSCAN** The DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm is a density-based clustering algorithm that groups data points based on their density and identifies outliers as noise. | Benefits | Drawbacks | |---|---| | Handles irregularly shaped and sized clusters | Not suitable for datasets with categorical features | | Robust to outliers | Requires a drop in density to detect cluster borders | | Does not require the number of clusters to be specified | Struggles with clusters of varying density
Sensitive to scale of variables | | Less sensitive to initialization conditions | Sensitive to scale of variables | | Relatively fast compared to other clustering algorithms | Performance tends to degrade in high-
dimensional data | ## **Difference DBSCAN and K-Means** | DBSCAN | K-Means | |--|--| | In DBSCAN we need not specify the number of clusters | K-Means is very sensitive to the number of clusters so it need to be specified | | Clusters formed in DBSCAN can be of any arbitrary shape | Clusters formed in K-Means are spherical or convex in shape | | DBSCAN can work well with datasets having noise and outliers | K-Means does not work well with outliers data, ouliers can skew the clusters in K-Means to a very large extent | | In DBSCAN two parameters are required for training the model | In K-Means only one parameter is required for training the model | ## **Support Vector Machine** The **Support Vector Machine (SVM)** algorithm is a supervised learning algorithm that separates data points by finding the optimal hyperplane with the largest margin between different classes | Benefits | Drawbacks | |---|---| | works better when the data is linear | choosing a good kernel is not easy | | more effective in high dimensions | doesn't show good results on a big dataset | | can solve any complex problem with kernel trick | not that easy to fine-tune the hyper-
parameters | | not sensitive to outliers | | | can do image classifications | | # **Naive Bayes** The **Naive Bayes** algorithm is a simple probabilistic classifier that calculates the probability of a data point belonging to a certain class based on the conditional probabilities of its features | Benefits | Drawbacks | |---|---| | works quickly and can save a lot of time | assumes that all predictors (or features) are independent | | suitable for solving multi-class prediction problems | faces the 'zero-frequency problem' | | can perform better than other models and requires much less training data | estimations can be wrong in some cases | | better suited for categorical input variables than numerical variables | | # ML Model Evaluation ### **Bias-Variance Tradeoff** There is a tradeoff between a model's ability to minimize bias and variance ### **Cross Validation** # Training Dataset Train Test Train Model Simple and easy to use Not enough test data for a sparse dataset Error rate misleading when unfortunate split K-Fold ■ model Generalization Validation imbalanced datasetcomputational costs ### Random subsampling - simplicity and lack of bias - □ larger population necessary - under certain circumstances bias can occur ### Leave one out - less biased on test data - computational costs ### **Walk Forward Optimization** Walk Forward Analysis does optimization on a training set; test on a period after the set and then rolls it all forward and repeats the process. Walk Forward Matrix is a set of walk forward analysis with different number of periods and out of sample percentages ### **Regression Metrics** MSE = $$\frac{1}{N} \times \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$ N - number of data samples y_i - actual data value \hat{y}_i - predicted data value $$RMSE = \sqrt{\frac{1}{N} \times \sum_{i=1}^{N} (y_i - \hat{y}_i)^2}$$ N - number of data samples y_i - actual data value $\hat{\mathbf{y}}_i$ - predicted data value $$MAE = \frac{1}{N} \times \sum_{i=1}^{N} |y_i - \hat{y}_i|$$ N - number of data samples y_i - actual data value $\hat{\mathbf{y}}_i$ – predicted data value ### **Classification Metrics** A confusion matrix visualizes and summarizes the performance of a classification algorithm ### **Associations Metrics** | Transaction 1 | 9 9 % | |---------------|--------------| | Transaction 2 | (4) | | Transaction 3 | (4) | | Transaction 4 | (4) | | Transaction 5 | Ø 📦 👄 💊 | | Transaction 6 | ∅ 📦 ⊜ | | Transaction 7 | ∅ | | Transaction 8 | Ø 🖔 | This says how popular an itemset is, as measured by the proportion of transactions in which an itemset appears The support of {apple} is 4 out of 8, or 50% Confidence $$\{ \bigcirc \rightarrow \bigcirc \} = \frac{\text{Support } \{ \bigcirc, \bigcirc \}}{\text{Support } \{ \bigcirc \}}$$ This says how likely item Y is purchased when item X is purchased, expressed as $\{X \rightarrow Y\}$ The confidence of {apple -> beer} is 3 out of 4, or 75% Lift $$\{ \bigcirc \rightarrow \bigcirc \} = \frac{\text{Support } \{ \bigcirc, \bigcirc \}}{\text{Support } \{ \bigcirc \} \times \text{Support } \{ \bigcirc \}}$$ This says how likely item Y is purchased when item X is purchased, while controlling for how popular item Y is The lift of {apple -> beer} is 3 out of 4 multiplied by 6, or 12,5% ### References Akinfaderin, W. (2021, April 30). The Mathematics of Machine Learning - Towards Data Science. Medium. https://towardsdatascience.com/the-mathematics-of-machine-learning-894f046c568 AlgoDaily. (n.d.). AlgoDaily - Daily coding interview questions. Full programming interview prep course and software career coaching. https://algodaily.com/lessons/standardization-and-normalization Anindya. (2022). Naive Bayes algorithm in Machine Learning with Python. ThinkInfi. https://thinkinfi.com/naive-bayes-algorithm-in-machine-learning-with-python/ Applications of Machine Learning - Javatpoint. (n.d.). www.javatpoint.com. https://www.javatpoint.com/applications-of-machine-learning Baheti, P. (2023, April 24). What is Machine Learning? The Ultimate Beginner's Guide. V7. https://www.v7labs.com/blog/machine-learning-guide Butler, R. G. (2017, May 22). Preparing your Data for AutoDiscovery: Table-Like Structure in Excel. butlerscientifics. https://www.butlerscientifics.com/single-post/2017/05/22/preparing-your-data-for-autodiscovery-table-like-structure-in-excel Chauhan, A. (2021, December 31). Random Forest Classifier and its Hyperparameters - Analytics Vidhya - Medium. Medium. https://medium.com/analytics-vidhya/random-forest-classifier-and-its-hyperparameters-8467bec755f6 Descriptive Predictive Prescriptive Analytics | Data Science Association. (n.d.). https://www.datascienceassn.org/content/descriptive-predictive-prescriptive-analytics Editor. (2021, October 30). Data Scientist vs Data Engineer: Differences and Why You Need Both. AltexSoft. https://www.altexsoft.com/blog/data-scientist-vs-data-engineer/ Ehlers, J. (2005), Building Trading Systems on Nonlinear Filters EliteDataScience. (2022, July 8). Modern Machine Learning Algorithms: Strengths and Weaknesses. EliteDataScience. https://elitedatascience.com/machine-learning-algorithms Ellis, C. (2022, June 8). When to use DBSCAN. Crunching the Data. https://crunchingthedata.com/when-to-use-dbscan/ Encoding cyclical continuous features - 24-hour time. (2016, July 31). Ian London's Blog. https://ianlondon.github.io/blog/encoding-cyclical-features-24hour-time/ GeeksforGeeks. (2023). Advantages and Disadvantages of Logistic Regression. GeeksforGeeks. https://www.geeksforgeeks.org/advantages-and-disadvantages-of-logistic-regression/ ### References GeeksforGeeks. (2023b). DBSCAN Clustering in ML Density based clustering. GeeksforGeeks. https://www.geeksforgeeks.org/dbscan-clustering-in-ml-density-based-clustering/ Goyal, C. (2021). Importance of Cross Validation: Are Evaluation Metrics enough? Analytics Vidhya. https://www.analyticsvidhya.com/blog/2021/05/importance-of-cross-validation-are-evaluation-metrics-enough/ Han, J., Kamber, M., & Pei, J. (2012). Data mining: concepts and techniques. Choice Reviews Online, 49(06), 49–3305. https://doi.org/10.5860/choice.49-3305 K, D. (2023, February 7). Top 5 advantages and disadvantages of Decision Tree Algorithm. Medium. https://dhirajkumarblog.medium.com/top-5-advantages-and-disadvantages-of-decision-tree-algorithm-428ebd199d9a k-Means Advantages and Disadvantages. (n.d.). Google for Develop K-Nearest Neighbor(KNN) Algorithm for Machine Learning - Javatpoint. (n.d.). www.javatpoint.com. https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-machine-learning Kumar, A. (2023, April 13). PCA vs LDA Differences, Plots, Examples - Data Analytics. Data Analytics. https://vitalflux.com/pca-vs-lda-differences-plots-examples/#:~:text=PCA%20is%20an%20unsupervised%20learning,directions%20of%20maximum%20class%20separability Kumar, A. (n.d.). AN INTRODUCTION TO MARKET BASKET ANALYSIS - ASSOCIATION RULE. www.linkedin.com. https://www.linkedin.com/pulse/introduction-market-basket-analysis-association-rule-abhishek-kumar Lecture 12: Bias Variance Tradeoff. (n.d.). https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote12.html Likebupt. (2021, November 4). Normalize Data: Component Reference - Azure Machine Learning. Microsoft Learn. https://learn.microsoft.com/en-us/azure/machine-learning/component-reference/normalize-data?view=azureml-api-2 Mitchell, C. (2022). Triple Exponential Moving Average (TEMA): Definition and Formula. Investopedia. https://www.investopedia.com/terms/t/triple-exponential-moving-average.asp ml-ops.org. (2023, February 22). https://ml-ops.org/content/crisp-ml Ohseokkim. (2021). [Preprocessing] Encoding Categorical Data. Kaggle. https://www.kaggle.com/code/ohseokkim/preprocessing-encoding-categorical-data Part 2: Kinds of RL Algorithms — Spinning Up documentation. (n.d.). https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html ### References Pramoditha, R. (2022, January 3). The Concept of Artificial Neurons (Perceptrons) in Neural Networks. Medium. https://towardsdatascience.com/the-concept-of-artificial-neurons-perceptrons-in-neural-networks-fab22249cbfc R, G. S. (2022, October 21). Encoding Categorical Data- The Right Way - Towards Al. Medium. https://pub.towardsai.net/encoding-categorical-data-the-right-way-4c2831a5755 Ricardo Gutierrez-Osuna, Lecture 13: Cross-validation, http://www.cs.tau.ac.il/~nin/Courses/NC05/pr_l13.pdf RoboticsBiz. (2022). Pros and cons of Random Forest Algorithm. RoboticsBiz. https://roboticsbiz.com/pros-and-cons-of-random-forest-algorithm/ SagarDhandare. (2022, March 28). Nominal And Ordinal Encoding In Data Science! - Nerd For Tech - Medium. Medium. https://medium.com/nerd-for-tech/nominal-and-ordinal-encoding-in-data-science-c93872601f16 Saini, A. (2023). Support Vector Machine(SVM): A Complete guide for beginners. Analytics Vidhya. https://www.analyticsvidhya.com/blog/2021/10/support-vector-machinessym-a-complete-guide-for-beginners/ Seraydarian, L. (2023). What Is a Confusion Matrix in Machine Learning? Plat.Al. https://plat.ai/blog/confusion-matrix-in-machine-learning/ Sumanth, G. (2021, December 12). Illustrative Example of Principal Component Analysis(PCA) vs Linear Discriminant Analysis(LDA): Is PCA good guy or bad guy? Medium. https://medium.com/analytics-vidhya/illustrative-example-of-principal-component-analysis-pca-vs-linear-discriminant-analysis-lda-is-105c431e8907 Understanding stratified cross-validation. (n.d.). Cross Validated. https://stats.stackexchange.com/questions/49540/understanding-stratified-cross-validation Vadapalli, P. (2022). Naive Bayes Explained: Function, Advantages & Disadvantages, Applications in 2023. upGrad Blog. https://www.upgrad.com/blog/naive-bayes- $explained/\#: \sim : text = Naive \% 20 Bayes \% 20 is \% 20 suitable \% 20 for, input \% 20 variables \% 20 than \% 20 numerical \% 20 variables.$ Walk-Forward Matrix - StrategyQuant. (2021, August 10). StrategyQuant. https://strategyquant.com/doc/strategyquant/walk-forward-matrix/ What is Machine Learning? | IBM. (n.d.). https://www.ibm.com/topics/machine-learning#:~:text=the%20next%20step-,What%20is%20machine%20learning%3F,learn%2C%20gradually%20improving%20its%20accuracy Wikipedia contributors. (2023). Cross-validation (statistics). Wikipedia. https://en.wikipedia.org/wiki/Cross-validation_%28statistics%29 Wikipedia contributors. (2023b). Walk forward optimization. Wikipedia. https://en.wikipedia.org/wiki/Walk_forward_optimization#:~:text=Walk%20Forward%20Analysis%20does%20optimization,Pardo